Blade Surface Pressure Measurements in the Field

and their usage for aerodynamic model validation

Deepwind 2025, Trondheim, 16 January 2025

E. Fritz, K. Boorsma, M. Caboni, A. Herrig, J. Peeringa

Importance of aerodynamic field measurements

Background and motivation

- Since 80s there have been joint efforts to validate and improve rotor aerodynamic models (IEA TCP Wind)
- With the advent of larger rotors, the topic of efficient but accurate models remains work in progress
- It is acknowledged that detailed sectional aerodynamic measurements (such as blade surface pressures) are needed to advance, a.o. to prevent compensating errors from integral measurements
- The wind energy community lacks publications featuring field databases of representative scale and measurement duration for this purpose
- Can we tackle this shortcoming??

Outline

Overview

- Background and motivation
- Methodology
 - Test set-up
 - Simulations
- Results
 - Pressure measurements
 - Comparison to simulations
- Conclusions and recommendations

Project overview

TIADE (Turbine Improvements for Additional Energy)

2020 - 2024

Scope of TIADE project:

- Blade improvement (innovative tip shapes, VGs, turbulator tips)
- Validation (erosion, yawed inflow, stall and/or vortex induced vibrations)
- Measurement innovations (aerodynamic pressure, torsion deformation, fibre optics)

K. Boorsma et al, *TIADE final report*, TNO-2024-R12112, December 2024, https://publications.tno.nl/publication/34643564/vPzmF6y0/TNO-2024-R12112.pdf

TIADE has partly been financed with Topsector Energiesubsidie from the Dutch Ministry of Economic Affairs under grant no. TEHE119018

Test set-up

3.8MW / 110 m hub / © 130 m

Overview

• GB LiDAR system is used to measure the wind field

 The blade is equipped with pressure sensors at about 25% of the blade radius

 Performance, loads and operational conditions are monitored

Test set-up

Numerical simulations

Simulation tools

Input:

Aerodynamic and structural turbine model (wind tunnel polars)

Operating conditions

Output:

- Power, thrust
- Blade aerodynamics, moments and deformations

Input:

- Airfoil geometry
- Reynolds number, Angle of attack, c/r value

Output:

- Airfoil polars: c_l , c_d , c_m
- Pressure coefficient distribution

Phatas

- BEM
- Structural solver

RFOIL

- 2D panel method
- Based on XFOIL
- Modified for rotating airfoils

Operational conditions

$$V(z) = V_{hub} \left(\frac{z}{z_{hub}}\right)^{\alpha}$$

Pressure distribution variation over a rotation

Sectional forces

Obtaining trends

Filter samples of 10-minute statistics for

- Normal operating conditions (no standstill)
- Undisturbed wind sector (no waked inflow)
- No extreme events (exclude large yaw misalignment, TI and shear)
- Malfunctioning sensors

~10% of data remains

Bin average the resulting samples

- Wind speed 3 to 20 m/s in steps of 1 m/s
- TI between 5% to 15% in steps of 2%
- Exclude bins < 6 samples
- Standard error to observe repeatability

$$S(\overline{\xi}) = \frac{\sigma_{bin}(\overline{\xi})}{\sqrt{N}}$$

Trends: Variation with wind speed and TI

Comparison to RFOIL – pressure distribution

- Input bin avg operational conditions to Phatas to obtain sectional conditions
- Input AOA and Re to RFOIL

$$U_{\infty} = 6 \text{ m/s}, \alpha = 7.52^{\circ}, \text{Re} = 4.13E6, N_{crit} = 0.69$$

$$U_{\infty} = 17 \,\mathrm{m/s}, \, \alpha = 11.24^{\circ}, \, \mathrm{Re} = 7.26E6, \, N_{crit} = 0.47$$

Comparison to Phatas – normal and tangential force (steady)

• Measured and simulated coefficients non-dimenionalized without induced velocities

Conclusions and recommendations

- Blade surface pressures were successfully measured on a state of the art R&D 3.8 MW wind turbine over a 2 year period, providing invaluable means for validating design tools
- The resulting measurement database gives a good insight in the aerodynamic performance at the measured section
- Overall a reasonable agreement has been obtained between numerical simulations and field experiments
 - Numerical tools based on blade element momentum theory and panel methods with viscous-inviscid interaction remain relevant for simulating modern multi-megawatt wind turbines
 - Larger discrepancies can be observed for higher wind speeds, when stalled flow occurs
- More details and results, e.g. about correlation with unsteady simulations, in the dedicated publication: E. Fritz et al, Blade Surface Pressure Measurements in the Field and Their Usage for Aerodynamic Model Validation. Wind Energy 27(12), December 2024, https://doi.org/10.1002/we.2952

Angle of attack estimation

Comparison to Phatas – normal force (unsteady loops)

• Measurements: Estimated angle of attack α_{est} using pattern matching

• Simulations: Snel 1st order dynamic stall

• Agreement between measurements and simulation varies between samples

Test set-up

Test site overview

- Turbine type: 3.8MW, 110 m hub height, 130 m rotor diameter
- Ground based Windcube LiDAR @ 11 heights (42 188 m)
- 2 Nacelle based fwd looking LiDARs (~0.25D -5D)
- Meteo mast at 2 km from turbine (wind, press, temp, disdro)
- Scanning LiDAR to measure wake at hub height (1D – 5D)

Test set-up

Turbine instrumentation

- IEC compliant power performance and loads (tower/shaft/blade)
- SCADA and tower top acceleration/inclination
- Deformation (torsion / flap / edge) and tufts @ blade roots
- Conventional pressure (+ fibre optic trial) @ 25% r/R (~2 years!)

Effect of Vortex Generators

Vortex generators

^[18] K. Vimalakanthan. Vortex generator layout design for TIADE blade section at 15m blade span. Tech. rep. TNO 2024 R12151. TNO, 2024.

^[19] G. Vanino. Vortex Generators applied to large-scale Wind Turbines. Tech. rep. TNO 2023 M12095. TNO, 2023.

Validation of models

Tuft measurements

[13] M. Caboni et al. 3D RANS-based CFD simulations on the LM637P blade. Tech. rep. TNO 2024 M11257. TNO, Nov. 2024.

