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Importance of aerodynamic field measurements

Background and motivation

» Since 80s there have been joint efforts to validate and improve rotor aerodynamic models (IEA TCP Wind)

iea wind

« With the advent of larger rotors, the topic of efficient but accurate models remains work in progress

« Itis acknowledged that detailed sectional aerodynamic measurements (such as blade surface pressures)
are needed to advance, a.o. to prevent compensating errors from integral measurements

« The wind energy community lacks publications featuring field databases of representative scale and
measurement duration for this purpose

« Can we tackle this shortcoming??
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Project overview
TIADE (Turbine Improvements for Additional Energy)

2020 - 2024

e [Scope of TIADE project: h

« Blade improvement (innovative tip shapes, VGs,
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e e e I . turbulator tips)

et o » - Validation (erosion, yawed inflow, stall and/or vortex
induced vibrations)

« Measurement innovations (aerodynamic pressure,
torsion deformation, fibre optics)

ey
. mem
P e
" .

K. Boorsma et al, TIADE final report, TNO-2024-R12112, December 2024,
D \ https://publications.tno.nl/publication/34643564/vPzmF6yO/TNO-2024-R12112.pdf
hy T TIADE has partly been financed with Topsector Energiesubsidie from the Dutch
T B Ministry of Economic Affairs under grant no. TEHE119018
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https://publications.tno.nl/publication/34643564/vPzmF6yO/TNO-2024-R12112.pdf

3.8MW /110 mhub/® 130 m

The blade is equipped with
pressure sensors at about 25%
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Test set-up
Challenges

~

HUB




Numerical simulations

Simulation tools

Input:

« Aerodynamic and structural turbine model (wind tunnel polars) Phatas

- Operating conditions N - BEM
Output: 4  Structural solver
* Power, thrust
* Blade aerodynamics, moments and deformations / i
)
Input:
- Airfoil geometry RFOIL

* Reynolds number, Angle of attack, c/r value - 2D panel method

Output: » Based on XFOIL

 Modified for rotating

airfoils

« Airfoil polars: ¢;, ¢4, ¢t

» Pressure coefficient distribution
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Results

Operational conditions
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Results

Pressure distribution variation over a rotation

Experiment
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Results

Sectional forces

Effect of wind shear and tower passage
‘ visible _‘

Experiment
Simulation

Experiment
Simulation
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Results
Obtaining trends

Filter samples of 10-minute statistics for

Uso [M/s]

« Normal operating conditions (no standstill)

« Undisturbed wind sector (no waked inflow)

« No extreme events (exclude large yaw misalignment, TI and shear)
) 10 15

T1 [%]

« Malfunctioning sensors o
~10% of data remains _:—0'15 A
"I shear exponent o
Bin average the resulting samples 1
«  Wind speed 3 to 20 m/s in steps of 1 m/s §

« Exclude bins < 6 samples

« TI between 5% to 15% in steps of 2% " .

- Standard error to observe repeatability S(&) = ' m -
VN T1 (%)
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Results

Trends: Variation with wind speed and TI

HP U =8m/s, TI= 5%: 5 . at . Uso = 5m/s, TI=5%:p
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Results
Comparison to RFOIL - pressure distribution

« Input bin avg operational conditions to Phatas to obtain sectional conditions
* Input AOA and Re to RFOIL

o =0 m/s, o = ?.520, Re = 4.13F6, Nerie = 0.69 U = 17 m/s, o = 11,240, Re = 7.26 E'6, Nerie = 0.47

Experiment,

low wind speed | [__]Experiment, 5+ 10(p) : :

p 1  Experiment, 7 + 5(7) hlgh Wlnd speed
RFOIL, 2D
RFOIL, 3D

p [Pa]

200 Pa
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Results

Comparison to Phatas — normal and tangential force (steady)

« Measured and simulated coefficients non-dimenionalized without induced velocities
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Conclusions and recommendations

Blade surface pressures were successfully measured on a state of the art R&D 3.8 MW wind turbine over a 2 year
period, providing invaluable means for validating design tools

The resulting measurement database gives a good insight in the aerodynamic performance at the measured
section

Overall a reasonable agreement has been obtained between numerical simulations and field experiments

« Numerical tools based on blade element momentum theory and panel methods with viscous-inviscid interaction
remain relevant for simulating modern multi-megawatt wind turbines

« Larger discrepancies can be observed for higher wind speeds, when stalled flow occurs

More details and results, e.g. about correlation with unsteady simulations, in the dedicated publication: E. Fritz et al,

Blade Surface Pressure Measurements in the Field and Their Usage for Aerodynamic Model Validation. Wind Energy 27(12),
December 2024, https://doi.org/10.1002/we.2952
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https://doi.org/10.1002/we.2952
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Results

Angle of attack estimation

(
. RFOIL d&tabde
aef0 &5 ]
Aa = 0.1
\_

Experiment

~

)l Pattern matching

~

Angle of attack
estimation
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Results
Comparison to Phatas — normal force (unsteady loops)

« Measurements: Estimated angle of attack a.., using pattern matching

Simulations: Snel 1st order dynamic stall

Agreement between measurements and simulation varies between samples
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Test set-up
Test site overview

« Turbine type: 3.8MW, 110 m hub height, 130 m
rotor diameter

« Ground based Windcube LiDAR @ 11 heights (42
- 188 m)

« 2 Nacelle based fwd looking LiDARs (~0.25D -
5D)

* Meteo mast at 2 km from turbine (wind, press,
temp, disdro)

« Scanning LiDAR to measure wake at hub height
(1D - 5D)




Test set-up

Turbine instrumentation

« IEC compliant power performance and loads (tower/shaft/blade)
« SCADA and tower top acceleration/inclination

« Deformation (torsion / flap / edge) and tufts @ blade roots

« Conventional pressure (+ fibre optic trial) @ 25% r/R (~2 years!)
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Effect of Vortex Generators

Vortex generators

(a) Installation of VGs using rope access

Col)

Power performance
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(b) Measured power coefficients (above) and pressure
distibutions (below) with and without VGs [19]

[18] K.Vimalakanthan. Vortex generator layout design for TIADE blade section at 15m blade
span. Tech. rep. TNO 2024 R12151. TNO, 2024.

[19] G. Vanino. Vortex Generators applied to large-scale Wind Turbines. Tech. rep. TNO 2023
M12095. TNO, 2023.
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Validation of models

Tuft measurements

(b) Tuft visualization with separation line in blue (c) Overlay of tuft and CFD results

Figure 3.11: Comparison between measured and predicted streamlines using tufts visualization and CFD
simulations at 8 m/s [1 3]

[13] M. Caboni et al. 3D RANS-based CFD simulations on the LM637P blade. Tech. rep. TNO

TNO e
2024 M11257. TNO, Nov. 2024.
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