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BaCngOU nd * Nylon ropes offer a lower stiffness than * Areliable stiffness model is needed to HypOtheSIS
 Marine conditions induce complex loading on steel and polyester but are highly non linear provide better predictions of line tensions . o
mooring lines of floating wind turbines. and difficult to predict. and platform motion. * Stiffness primarily depends on mean load and load
: = < — - amplitude [5, 6]
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e Portes® | We chose the bilinear model from Pham et al. [7]
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/ Vectrs 1 Zy=p(E,) Z;=j(&) _\/\/\/_. « Stiffness is much less dependent on frequency within

the representative spectrum of marine mooring lines [7]
Zv = v(g'v, 817)

« Stiffness is strongly influenced by water [8]
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Experimental Setup RTT Stitfness Measure in Harmonic Conditions
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* Eachtest starts with a ‘bedding-in’ < 100 cycles for each (Lm, La, P) condition = 7 mean tension . h
(Weller et al., 2014 [2]) D L
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« Sample: nylon subropes (PA6) ~ =
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3-strand architecture, O | S 5
linear density =120.5 g/m = = 2 | |
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P a) 1 00 tons traction bench in the SMASH lab at IFREMER — Brest (France) 100 load cyc[gs fqr different (Lm, La) values. Stiffness is Bilinear dependency of stiffness on mean load (Lm) and
_ b) Wire extensiometer and spray system that keeps the sample wet B g measured with linear regression over the last 5 cycles load amplitude (La) in regular cyclic conditions [9] .
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o Density colormap for Distribution of Lm and La of all cycles in a stochastic signal with 3 different methods for cycle detection
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= It was found that, except for the time discretization, the method of cycle extraction does not strongly influence the identified bilinear model EA=f(Lm, La)
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ReSU ltS |dentified parameters in harmonic conditions: a = 46.3; b = 27.3; ¢ = 0.501% [5] > COI’]CIUSIOI’] d nd D|SCUSS|On
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|dentified parameters in stochastic conditions: a = 52.6; b = 255, cC = —064‘6a 6 Efﬁcient experlmental protocol for identlfying model parameters for
. 2 established stiffness in harmonic conditions.
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Measured Stiffness 0.02 - e . _ _ .
Constant mean Stiffness RMSE = 0.818 04 In the future, the sensitivity of the line design, particularly under fatigue
Harmonic Bilinear Model RMSE =0.784 S . T .08 0.0 conditions, will be analysed with respect to parameter variability.
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Future Work: Stiffness measure in controlled, randomized cyclic conditions (pseudostochastic) ,
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Pseudostochastic protocol showed that previous cycles have a rather weak influence on those following, but it does not give the same set of parameters: to be examined. SR A - T
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