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where 𝐻(1)(𝜔1) and 𝐻(2) 𝜔1, 𝜔2  are the linear and quadratic transfer functions.
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𝜁 𝑡 = 𝐴1𝑒𝑖Ω1𝑡 + 𝐴2𝑒𝑖Ω2𝑡

𝑍 𝜔 = 2𝜋𝐴1𝛿(𝜔 − Ω1) + 2𝜋𝐴2𝛿(𝜔 − Ω2)

𝑓 𝑡 = 𝑓1 𝑡 + 𝑓2 𝑡 + ⋯ + 𝑓𝑚(𝑡)

Which can be conveniently expressed in the frequency domain as,

If the system is excited with a bi-chromatic wave with amplitudes 𝐴1 and 𝐴2,

𝑓 𝑡 = 𝐴1𝐻(1) Ω1 𝑒𝑖Ω1𝑡 + 𝐴2𝐻(1) Ω2 𝑒𝑖Ω2𝑡 + 2𝐴1𝐴2𝐻(2) Ω1, Ω2 𝑒𝑖 Ω1+Ω2 𝑡 …

then the response of the system becomes,
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The hydrodynamic low-frequency (LF) loading, 𝑓(𝑡), is a nonlinear functional of the wave 

elevation profile, 𝜁(𝑡), and depends on the hydrodynamic properties of the floating 

structure. LF loads become prominent in determining extreme offsets in moored 

structures and are generally described by a Quadratic Transfer Function (QTF). 

NARX is an autoregressive, forecasting, data-driven model. The key idea is that the next 

step prediction ( መ𝑓𝑛) of the hydrodynamic force can be represented as a nonlinear function 

of a few past values of that same force (autoregressive part) and a wave elevation profile 

(exogenous part):

For this application we chose a polynomial NARX model whose form is shown below,
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መ𝑓𝑛 = ℱ 𝑓𝑛−1, 𝑓𝑛−2, … , 𝑓𝑛−𝑛𝑓 , 𝜁𝑛, 𝜁𝑛−1, … , 𝜁𝑛−𝜁𝑛 = ℱ(𝒙𝑛) (7)

The numerical tools for estimating such 

transfer functions assume infinitely small 

wave slopes and neglect viscous effects 

which leads to inaccurate results in harsh 

sea-states.

This study implements an alternative 

data-driven approach for estimating the 

quadratic transfer function from time 

series data 𝑓(t)  and 𝜁(𝑡)  using a 

nonlinear auto-regressive model with 

exogenous input (NARX) and 

harmonic probing (HP). 
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Volterra Series

𝜁 𝑡 = 𝐴1𝑒𝑖Ω1𝑡 + 𝐴2𝑒𝑖Ω2𝑡

Bi-chromatic wave 𝑓 𝑡
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Harmonic Probing

The Volterra series represents a nonlinear functional relationship between the 

input and output of a systems, 

The simple form of this model allows for an efficient training using an off-the-shelf 

regression algorithm. The training of the unknown coefficients is performed as follows,
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Transforming the residual to the frequency domain gives us access to specific frequency 

bins whose amplitude is a function of the unknown transfer function:

Minimizing the amplitude of the residual at (Ω1 + Ω2) w.r.t ෠𝐻 2 Ω1, Ω2  yields the transfer 

function:  

𝑄𝑇𝐹(𝜔1, 𝜔2)

𝜔1

𝜔2

(1)

(5)

(6)

(8)

(9)

(10)

F
or

ce
, 𝑓

(𝑡
) 

[N
] 8

4

0

20

10

0S
ur

ge
, 𝑥

(𝑡
) 

[m
]

Experimental Verification

The idea behind harmonic probing (HP) is to equate the two loading models, namely, the 

Volterra Series expansion and polynomial-NARX. This allows for the, otherwise 

meaningless, NARX coefficients to be related to a physical quantity such as the transfer 

functions contained in the Volterra Series. This can be achieved by formulating a residual 

equation:
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