DNTNU

Comparison of quasi-static and dynamic mooring line models for shared mooring floating wind farms

Vishnu Ramachandran Nair Rajasree PhD student Department of Marine Technology, NTNU Erin Bachynski-Polić Professor Department of Marine Technology, NTNU Thomas Sauder Professor Department of Marine Technology, NTNU SINTEF Ocean

18th Jan 2024

Damping sources for floater motion :

- Radiation damping
- Aerodynamic damping
- Damping from drag loads on the floater
- Damping from inertial and drag loads acting on the mooring lines

A prescribed motion test on an individually moored turbine produces the following damping coefficients at low frequencies.

-> At lower frequencies the damping from the floater and mooring line becomes comparable.

Anchor line		
Line material	Polyester	
Line diameter	264	mm
Minimum breaking load	18.64	MN
Line stiffness (EA)	466	MN
Dry mass coefficient	44.7	kg/r
Wet mass coefficient	9.5	kg/r
Horizontal footprint	1300	m
Line pretension	1.8	MN
Water depth	500	m

Test cases

Eigen value analysis – Grid21

Methodology

- Environment condition : Hs 2m , Tp 7s, Wind speed = 12 m/s, Turbulent wind
- Focus is to conclude on the importance of damping -> two statically equivalent models are built :
 - Quasi-static mooring line model -> Catenary/Irvine's cable equations
 - Dynamic mooring line model -> RIFLEX FEM model

Methodology

- 2 step simplified simulation approach
- Step 1 Turbulent wind fixed tower + rotor test -> obtain time series of 6 dof aero force

 \odot Computationally efficient fairlear approach (10x faster) Independent \odot No effect of platform wind realizations ę, perpendicular to motions on aerodynamics wind direction sl 11 Shift force time series in wind direction

Step 2 – Prescribed 6 dof aero force + constant wind (to get the tower drag) + wave simulation

Results – Grid21 Platform motions

- - Statistically the motions are similar between catenary and RIFLEX models.
 - For all the cases std. dev are comparable between RIFLEX and catenary -> slightly smaller in case of RIFLEX due to damping.
 - The max. difference in std. deviation is 0.3 m (Buoy case)

Results – Grid21 Platform motion spectrum

The differences in motions of the platform are seen at specific eigen frequencies – motion spectrum for D241Clmp30_B300 P2semi is shown as an example.

Results – Grid21 Platform motion spectrum

Eigen period of the anticollective mode not low enough for the line damping to be dominant.

Similar observations were made for Grid33 variant of the lattice.

Conclusion

- Compared the motions of platforms the in 2 shared mooring lattice configurations with 5 different variants of the mooring system design with dynamic and quasi-static mooring line models.
- For near rated condition (and extreme wave condition (Hs = 11 m, Tp = 12 s – not shown in the presentation) no significant difference in platform motions is seen between using a dynamic mooring line model and quasi-static mooring line model.
- The small differences occur at specific eigen frequencies of the lattice.
- Comparing the dynamic and quasi-static mooring line models (Grid21):
 - Max. difference in std. dev in displacement in x global direction – 0.3 m (Deviation of approx. 8.04%)
- Significant time saving in simulation can be obtained by using a quasi-static mooring line model for lattice simulations.

Average simulation time of prescibed aero force simulations

Thank you

This research has been funded by the Research Council of Norway through project 326654 CYBERLAB KPN, a collaboration between SINTEF Ocean, NTNU, University of Aarhus, Equinor, Aker Offshore Wind, APL Norway, Sevan SSP and Delmar Systems.

Grid21 – Tension time series

16

Grid21 – Tension statistics

- Max tension occurs in P2 al_4 as expected due to thrust accumulation.
- Similar tensions from both dynamic as well as quasi-static approaches.
- No slacking of the lines in any of the designs for this sea state.
- Max tensions much less than MBL —> this may not be the driving condition.

