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Motivation

Damping sources for floater motion :

* Radiation damping

 Damping from drag loads on the floater

 Damping from inertial and drag loads acting on the mooring lines
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A prescribed motion test on an individually moored turbine produces
the following damping coefficients at low frequencies.

-> At lower frequencies the damping from the floater and
mooring line becomes comparable.

[line material ~ Polyester |
Line diameter 264 mm
Minimum breaking load 18.64 MN
Line stiffness (EA) 466 MN
Dry mass coefficient 44.7 kg/m
Wet mass coefficient 9.5 kg/m
Horizontal footprint 1300 m
Line pretension 1.8 MN
Water depth 500 m
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Floater 1 Floater 2

Clump weight Due to the geometry — large
vertical velocity is expected at
the clump when the floaters
have anti-collective horizontal

motions.




Motivation

Ascertain how this affects l g DE—
the platform motions by | f
comparing  simulations
O . . .
using quasi-static and
dynamic line models.
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Test cases

Lattice variants

Grid21

Grid33

/‘\{%?*\

/\X\

Shared line design

Clump weight

Y

Variant

D264 clmp50
D264 _clmp30
D241 _cIlmp30
D213 _cIlmp30

Line/clump property variants

Polyester

line dia
[mm]

264
264
241
213

50 18.640
30 18.640
30 15.696
30 12.263

Pretension
(MN)

3.754
3.201
2.860
2.414

Anchor line design

Taut anchor lines

Buoyancy module on anchor lines
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Eigen value analysis — Grid21

Grid21 First 4 modes for D241 _clmp30_B300
Collective modes

Mode : 1 | Period : 130.94 s Mode : 2 | Period : 110.66 s
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Methodology

* Environment condition : Hs —2m, Tp — 7s, Wind speed = 12 m/s, Turbulent wind

* Focus is to conclude on the importance of damping -> two statically equivalent models are built :
* Quasi-static mooring line model -> Catenary/Irvine’s cable equations
* Dynamic mooring line model -> RIFLEX FEM model

Irvine’s cable

Equivalent rotor Dummy body aligned equation
inertia body __w» along rotor coord.
'\ system
——y

|

~

Irvine’s cable
equation

Inflexible tower with
equivalent drag coeff.

Dynamic mooring line model Quasi-static mooring line model




Methodology

e 2 step simplified simulation approach

Step 1 - Turbulent wind fixed tower + rotor test -> obtain Step 2 — Prescribed 6 dof aero forcse + constant wind (to
time series of 6 dof aero force get the tower drag) + wave simulation
o [RER — : —= © Computationally efficient
1 A P [ iE approach (10x faster)
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Results — Grid21 Platform motions
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General observation over all tested cases -> A portion of motion time series
of the least stiff system is shown below -> The dynamic and quasi-static line

anchor
clump .
fairlead models lead to nearly same motion responses for all the cases (small low
platform . .
chared line frequency variations observed)
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Results — Grid21 Platform motion statistics

Plsemi

XxGlob disp. [m]
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xGlob disp. [m]

Plsemi

Dia 241 mm
Clump 30 ton
B 300 m3

P2semi

Dia 241 mm
Clump 30 ton
B 300 m3

 cat m riflex

_8 Za X?D 4 8
e Statistically the

motions are similar
between  catenary
and RIFLEX models.
For all the cases std.
dev are comparable
between RIFLEX and
catenary -> slightly
smaller in case of
RIFLEX due to
damping.

The max. difference
in std. deviation is
0.3 m (Buoy case)
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Results — Grid21 Platform motion spectrum

The differences in motions of the platform are seen at specific eigen frequencies — motion spectrum for
D241Clmp30_B300 P2semi is shown as an example.
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x Global [m?/Hz]

Results — Grid21 Platform motion spectrum

2000

o

D241Clmp30_B300 P2semi

Difference in std. dev=0.3 m (8.04 % )
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\

Eigen period of the anti-

collective mode not low enough
/for the line damping to be

dominant.

Similar observations were made
for Grid33 variant of the lattice.
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Conclusion

Compared the motions of platforms the in 2 shared mooring lattice
configurations with 5 different variants of the mooring system
design with dynamic and quasi-static mooring line models.

For near rated condition (and extreme wave condition (Hs = 11 m,
Tp = 12 s — not shown in the presentation) no significant difference
in platform motions is seen between using a dynamic mooring line
model and quasi-static mooring line model.

Hours

The small differences occur at specific eigen frequencies of the
lattice.

Comparing the dynamic and quasi-static mooring line models
(Grid21) :
* Max. difference in std. dev in displacement in x global directio
— 0.3 m (Deviation of approx. 8.04%)

Significant time saving in simulation can be obtained by using a
quasi-static mooring line model for lattice simulations.

10 +

Average simulation time of prescibed aero force simulations

B Dynamic mooring line
I Quasi-static mooring line

3h sim. of Grid21 1h sim. of Grid33
Simulations
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Thank you
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Grid21 — Tension time series
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Small motions of the platform = good agreement between
dynamic and quasi-static tensions

Comparison of tension time series for P1lsemi in grid_2_1 D213_clmp30
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Grid21 — Tension statistics

Max tension occurs in P2 al_4 as
expected due to thrust accumulation.
Similar tensions from both dynamic as
well as quasi-static approaches.

No slacking of the lines in any of the
designs for this sea state.

Max tensions much less than MBL —> this
may not be the driving condition.
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