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Conventional mooring systems

• Conventional system: individual mooring lines 
with shared- or individual anchors 

• Hywind Tampen



Shared mooring systems

• Shared mooring system: shared line(s) and 
possible anchor(s)

• Direct shared line floater-to-floater
• Indirect shared line floater-moored buoy-

floater



Motivation
• Shared systems possible a 

mean to reduce:
• Costs
• Material usage
• Seabed impact

Individual lines 
and anchors

Individual lines, 
shared anchors

Shared lines, 
individual 
anchors

9 wind turbines 
36 mooring lines

36 anchors

9 wind turbines 
36 mooring lines

24 anchors

9 wind turbines 
24 mooring lines

12 anchors



Shared mooring system
• Synthetic fiber ropes in combination with buoys

and clump weights
• General trend: avoid chain and other components
• 3-4 lines for each turbine

• Wide range of horizontal eigenperiods
• Low frequency range
• Total system load

• Cumulated offset and static loading
• Large range of static mooring line tension
• Slack lines

• Line failure consequences

[1] Rajasree, V. R. N., et. al., Modelling and dynamic analysis of wind farms 
using SIMAPy and SIMA, NTNU, CYBERLAB KPN Presentation 2023. 

Figure taken from [1]



Rules and regulations

• DNV ST-0119 will be revised
• Floating Wind Reliability Joint Industry Project

• DNV, ISO, NORSOK, API, IEC, HAVTIL
 Targeted towards conventional mooring systems
 Existing rules and regulations are currently not adequate for shared 

systems
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Previous academic work about shared mooring



Main differences between conventional and shared mooring systems

Numerical modelling 
requirements

Static – and dynamic 
behavior 

Special design 
considerations

• Line failure and 
consequences

• Alternative cable topology 
layouts and design criteria

• Alternative park control and 
wake steering strategies

• Turbine spacing 
• Aerodynamics 
• Mooring system design

• Sailing depth requirements 
for shared horizontal lines

• Installation procedures
• Operation, maintenance and 

repair

• Large numerical models

• Increased number of design 
load cases 

• ULS
• ALS
• Turbines in production and 

stand-still

• Varying environmental 
conditions

• Dynamic wake effects
• Inhomogeneous wave?

• Direct load transfer between 
units

• Increased range of static 
mooring line loads 

• Due to cumulative tension 
• Possible slack leeward line

• Coupled floater response
• Coupled eigenmodes 



Design load cases – Ultimate Limit State

ULS criteria: design mooring system to avoid failure 
due to extreme loads. 50-year load/load effect [1] 

• Similar design load as for conventional systems?
• Coupling effects might change extreme responses
• Coupled eigenmodes
• Direction of environmental loads

• DNV-ST-0119 Most unfavorable direction?

• Turbines in operation and stand-still

[1] DNV AS, DNV-ST-0119 – Floating wind turbine structures, 2021.



Line failure – Accidental Limit State

ALS assumption: post-damage behavior and 
remaining redundancy after unexpected line break. 
1-year load/load effect [1]
• Today's practice for shared anchors
• Large number of failure modes and load cases

• Static analysis for early-stage design
• Transient load analysis after failure

• Shut-down requirements?
• Post damage behavior layout- and design 

dependent [2]

[1] DNV AS, DNV-ST-0119 – Floating wind turbine structures, 2021. [2] Lozon, E. and Hall, M., Coupled loads analysis of a novel shared-
mooring floating wind farm, Applied Energy 332 (2023) 120513.



Line failure - Different turbine states

• Crucial to avoid shut-down on all turbines
• Economical consequences

• Line replacement: ∼2 weeks
• Control system
• Disconnection of power cable



Inter-array power cable

• Common practice: 
• 2 cables connected to each unit 
• 1 extra cable for export

• Cable layout
• (a),(b): floater motion
• (c): relative motion 

• Weak link connection

[1] Equinor, Hywind Tampen – PL050 – PL057 – PL089 – PUD del II – 
Konsekvensutredning, 2019

[2] Ahmad, I. B., et. al., An optimisation methodology for suspended inter-
array power cable configurations between two floating offshore wind 
turbines, Ocean Engineering 278 (2023) 114406

Figure taken from [1]Figure taken from [2]



Control system 

• Maximized power production and load control 
• Similar as for conventional systems

• Alternative park control [1]
• Wake steering strategies

• Reduced wake effects vs. increased wear

• Cumulated load mitigation
• Line failure

• Control strategies to reduce loads and continue production

[1] Meyers, J., et. al., Wind farm flow control: prospects and challenges,
Wind Energ. Sci., 7, 2271–2306, 2022



Numerical simulations of shared mooring systems
• Time domain: full system effects

• Different methods available [1]
• Frequency domain: not used extensively for design of conventional 

systems
• Industry standard: experience combined with time domain analysis
• Increased need for efficient tools with many degrees of freedom

• Coupling modes
• Increased number of load cases in early-stage design
• Increased number of iteration for layout- and mooring system design
• Optimization
• Full quadratic transfer functions 

[1] Kvittem, M. et. al., Rational Simplification of High Fidelity Wind
Turbine Models Used for Mooring Analysis, Journal of Physics: 
Conference Series 2626 (2023) 012049.

[2] Sauder, T., 
2023, J. Phys.: Conf. Ser. 2626 012038.

Second-order wave loads on floating wind parks with 
shared mooring, 



Installation

• Today: installation expected to be more complex
• Taut lines 
• Station keeping during installation

• Integrity of mooring system in installation phase
• Hywind Tampen [1]

• Desirable to design for no re-tensioning of lines

[1] Equinor, https://www.equinor.com/news/20230823-hywind-tampen-
officially-opened, visited 2024-01-09

https://www.equinor.com/news/20230823-hywind-tampen-officially-opened
https://www.equinor.com/news/20230823-hywind-tampen-officially-opened


Repair

• Integrity of system during repair
• Unit towed to shore
• Temporary solution?
• Pre-tension hook-off/on
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