

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Department of Civil and Environmental Engineering

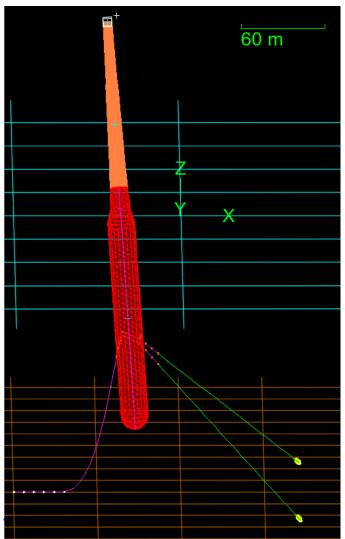
Mooring optimization for compliant FOWTs using an adaptive PSO with regrouping behavior

Trondheim, 18/01/2024

Magnus Daniel Kallinger, Pau Trubat Casal (UPC), Jose Luis Dominguez Garcia (IREC)

Motivation & Goal

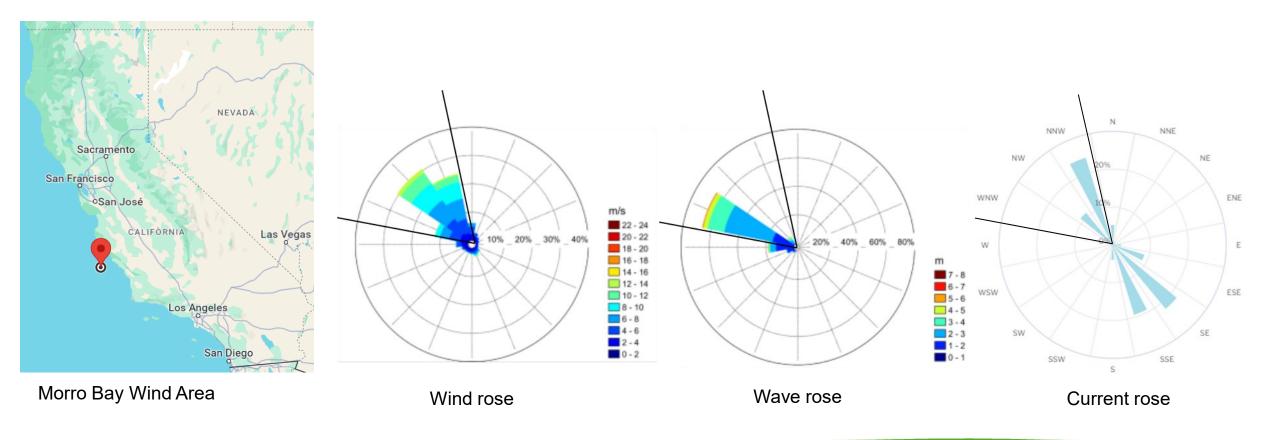
- Station-keeping vital for compliant FOWTs (excl. TLPs)
 - multiple lines
 - catenary, taut or semi-taut systems
 - ancillary equipment (clump weights, buoyancy elements, load-reduction devices)
 → large number of possible design variables → tedious task with large complexity
- Typical simplification:
 - limited number of variables considered + all lines restricted to one topology
- Goals:
 - development of a fast and automatic optimization method for CAPEX minimization, using:
 - a metaheuristic to allow for high-quality and fast solutions,
 - Python for data pre- and postprocessing, and
 - OrcaFlex for the technical assessment
 - explore
 - different topologies in a single mooring system
 - semi-submersible vs SPAR structure for a 15 MW wind turbine
 - differences for different water depths
 - shallow 200m
 - deep 800m



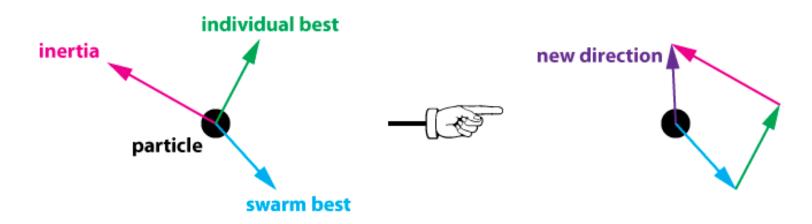
Assumptions & Conditions

- mooring lines divided into groups
 - line in groups identical \rightarrow allows allocation to different topologies

- frequency-domain assumed good enough for preliminary optimization
 - requires constant rated thrust application
 - fast computation

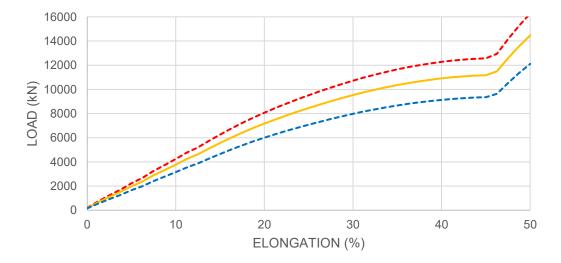

- most important DLCs incl. full- and half-way corrosion (4mm/year for 25 years)
 - 1.6 (ULS)
 - consequence class I (ST-0119)
 - safety factor for frequency to time-domain (derived from OS-E301)
 - 1.2 (FLS)

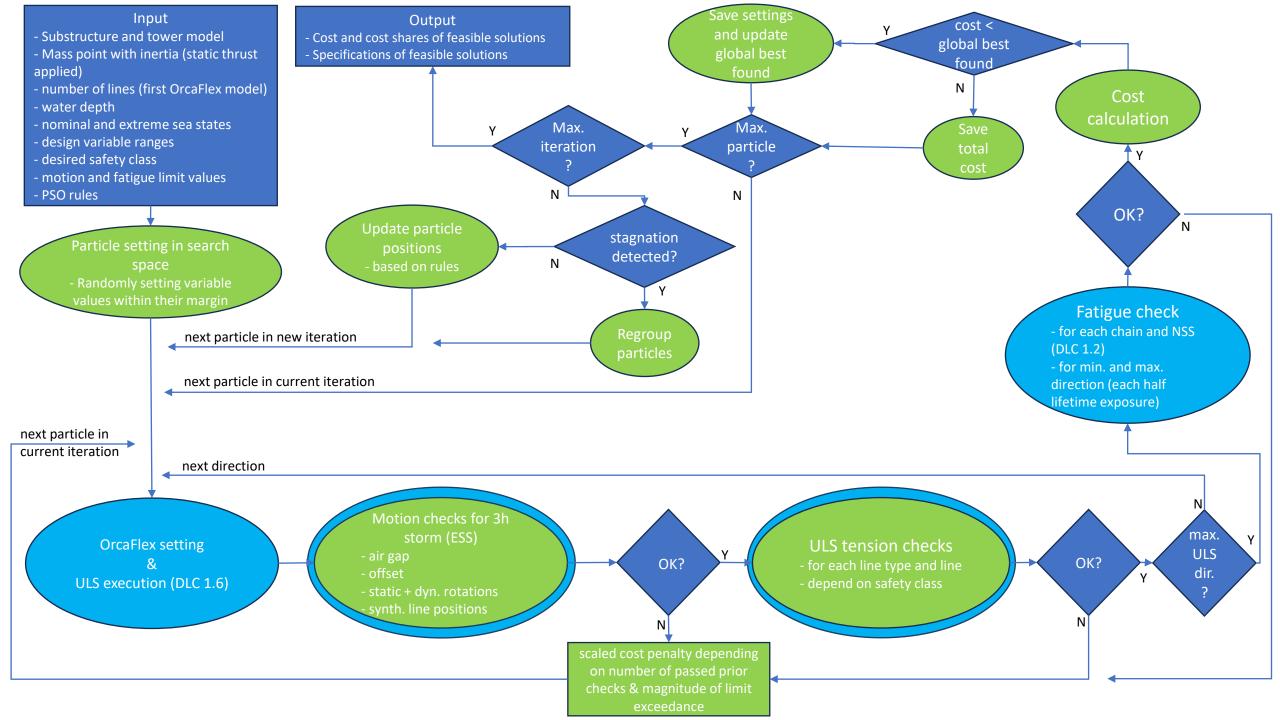
Assumptions & Conditions


- Environmental conditions
 - irregular sea state via JONSWAP spectrum
 - co-alignment of wind, wave and current applied at 0° & 30°
 - symmetry \rightarrow assessment valid for a 60° span

Implementation

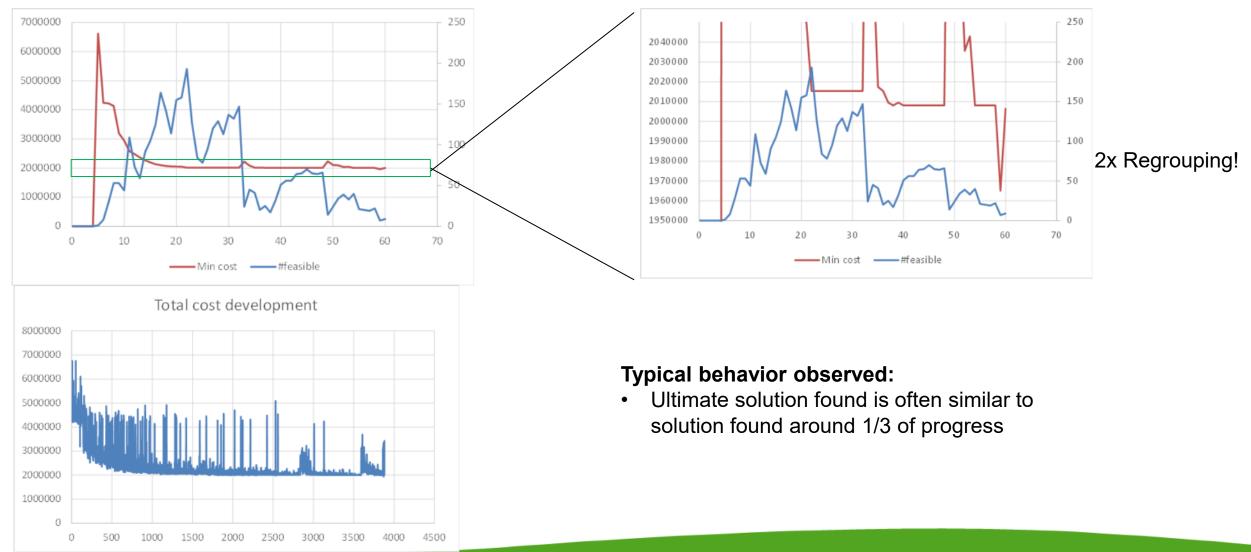
- adaptive PSO with regrouping behavior
 - adaptive: PSO characteristics are adapted to lead to convergence and exploitation


 regrouping of particles (solutions) in case no new best solution is found over iteration threshold

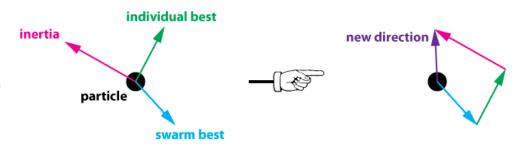

- applied to
 - VolturnUS semi: Orcina example
 - WindCrete SPAR: self-built model validated with OpenFAST

Implementation

- Design variables per line group
 - anchor radius
 - spread angles
 - total line length
 - line section lengths and diameters
 - bottom chain (studless)
 - fiber rope/wire
 - forerunner chain (studless)
 - fiber/wire rope material
 - polyester, nylon, steel spiral wire
 - number, class and position of
 - buoyancy elements
 - clump weights
 - load-reduction devices (LRDs)
 - variable axial stiffness
 - shock absorber
 - can be helpful for mitigating fatigue and extreme loads



Performance of optimizer (example)

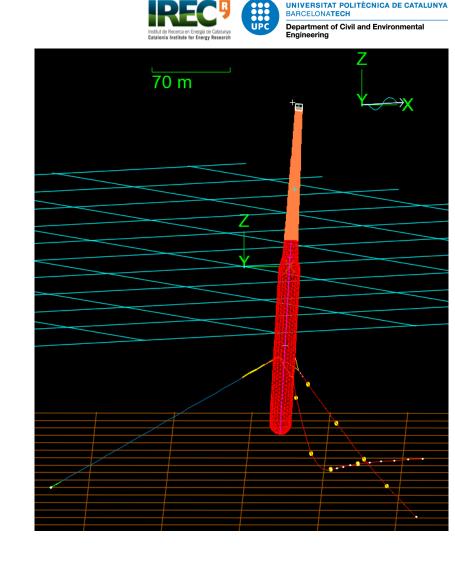

• VolturnUS: 3 lines 2 upwind (800m) (400p, 60 it., 10 regr.)

Performance of optimizer (solution approach)

- include initial valid solution to guide the optimization
- set PSO characteristics to allow for more search space exploration
 - inertia (how strictly does particle follow its own path)
 - $0.95 \rightarrow 0.99$ (< 1; avoids explosion)
 - cognitive (how much influence does personal best have)
 1.4 → 1.7
 - social (how much influence does global best have)
 - 1.5 → 1.0

Benchmark vs. obtained results

- 2022 Corewind Project <u>D2.3 "Exploration of innovations and breakthroughs of station keeping systems for FOWT"</u>
 - optimized mooring system incl. LRDs
 - main differences to PSO
 - among others used DLC 6.1 & 6.2 in time domain
 - used materials are fixed
 - deterministic optimization
 - similar cost functions and constraints

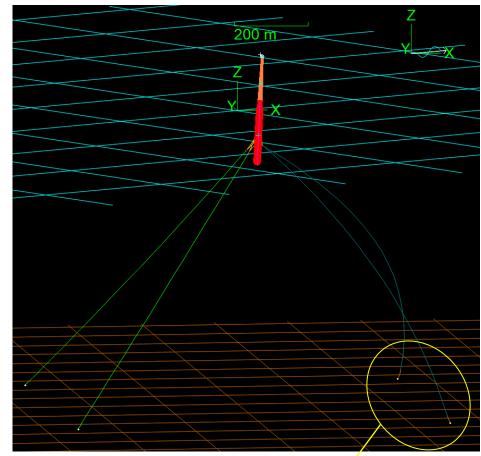

Structure	200m (Gran Canaria)	870m (Morro Bay)	results in same order of magnitude (and even lower)
"ActiveFloat" SEMI	713k € <mark>864k €</mark>	2 220k € 1 494k €	
"WindCrete" SPAR	814k € 634k €	1 529k € 1 153k €	

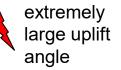
Preliminary results – SPAR – 200m – 634k €

- 1 upwind mooring line
 - taut

•

- top chain 9565kN MBL (~ x2)
 - LRD 1000kN x 3 / x2 \rightarrow no static convergence
- Nylon 12062kN MBL @ 240mm
- bottom chain 10753kN MBL
- suction anchors
- 2 downwind mooring lines
 - "catenary" taut
 - top chain 4621kN MBL (~x2)
 - LRD 1000kN x 2 / x1 → yaw violation
 - bottom chain 4621kN MBL
 - clump weights $4 \times 3t / x3 \rightarrow$ fatigue issue
 - suction anchors

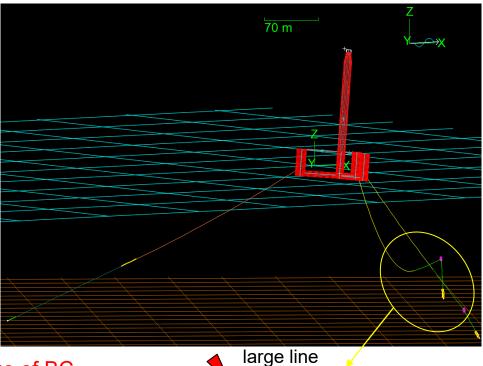



Preliminary results – SPAR – 800m – 1 153k €

- 2 upwind mooring lines
 - taut
 - top chain 6745kN MBL (~ x2)
 - LRD → 1000kN x 1 / x0 → higher BC grade → + 23k €
 - Polyester [⊥] 13514kN MBL @ 216mm / 214mm → offset
 - bottom chain 10574kN MBL
- violation!

fatigue issue!

- suction anchors
- 2 downwind mooring lines
 - "light" taut
 - top chain 18876kN MBL (~x2) @ 172mm / 167mm →
 - Nylon 2461kN MBL
 - bottom chain 4621kN MBL
 - suction anchors



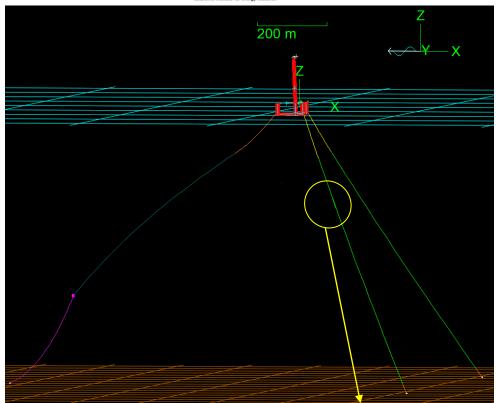
Preliminary results – Semi – 200m – 864k €

- 1 upwind mooring line
 - taut
 - top chain 13085kN MBL
 - LRD 1000kN x 3
 - Nylon 12062kN MBL
 - bottom chain 13085kN MBL @ 137mm / 132mm → fatigue
 - suction anchors
- 2 downwind mooring lines
 - semi-taut
 - top chain 5454kN MBL
 - Nylon 9807kN MBL @ 216mm / 192mm → pitch vio.
 - Buoys
- 9t x 1 / 6t \rightarrow works well / 3t \rightarrow fatigue of BC
- bottom chain 5490kN MBL
 - clump weights $3t \times 4 / 3t \times 1 \rightarrow fatigue of BC$
- suction anchors
- Together
 - THICKER BC, 3t x 1 buoy, no weights + thinner Nylon
 → works well (835k €)
 → offset violation
 - \rightarrow tedious task of mooring optimization

bending

13

Preliminary results – Semi – 800m – 1 494k €


• 2 upwind mooring lines

٠

- taut
 - top chain 13887kN MBL
 - Polyester 19777kN MBL @ 258mm / 252mm → offset
 - bottom chain 13085kN MBL
 - suction anchors
- 1 downwind mooring line
 - semi-taut
 - top chain 4621kN MBL
 - Nylon 12062kN MBL @ 240mm / 192mm→ works
 - Buoys
- $3t \times 1$ / no buoy \rightarrow offset violation

violation

- bottom chain 4621kN MBL
- suction anchors

Line foldback → adjustable with larger system damping parameters → offset violation → longer upwind BC

Critics

- frequency-domain
 - known ULS load underestimation
 - inaccuracy of fatigue loads due to static thrust application
 - bigger WTs more wind-driven
- computational time
 - running 7 scripts in parallel on older PC
 - 64bit, i5 Processor, Windows 10, 3.3GHz, 8GB RAM
 - \rightarrow 1 week/water depth
- Iimited directionality & co-alignment of environmental forces
- missing considerations & constraints:
 - marine growth
 - line bending, uplift angles
 - false positive static convergence
 - RNA accelerations
 - resonances
 - ...

Conclusion & Outlook

- developed tool good for preliminary design
- explored potential of having different line topologies in one mooring system
- Next steps:
 - verification of results via coupled timedomain simulations
 - exploration of PSO parameters to achieve better/faster performance
 - working with fully-coupled time-domain simulations → AI training
 - extension to shared mooring systems

Takk!

Questions and comments?

Minimizer@irec.cat