

Design optimization of floating offshore wind farms using a steady state motion and flow model

Ju Feng ¹, Mads M Pedersen ¹, Riccardo Riva ¹, Henrik Bredmose ¹, Santos Pedro ² ¹ DTU Wind and Energy Systems ² DHI A/S

1. The background

- Floating wind is set to grow tremendously in the near future.
- Large FOWFs will be designed and constructed.
- Design optimization of these FOWFs will be an important task.
- Most of the current studies on FOWF design ignore the motion of the FOWTs.
- A fast model that can capture the mean (and essential) effects introduced by platform motion will be needed for energy yield assessment of FOWFs.
- How much difference will floating cause for the power production and wake flow needs to be evaluated.

2. The challenge

3. The modelling

- Python package developed by DTU Wind Energy
- Open source and available at PyPi and
 <u>https://gitlab.windenergy.dtu.dk/TOPFARM/PyWake</u>
- Simulates static flow in wind farms
- Calculate AEP and flow maps
- Modular, flexible and very fast
- Used by +35 companies

Turbine model

- IEA 15 MW reference turbine •
- WindCrete floating spar buoy ٠
- 3 mooring lines •
- 200 m water depth •

DTU Database from HAWC2 Simulations

Surrogate inputs and outputs

Inputs

- Wind speed
- Wind direction
- Current speed
- Current-wind
 misalignment

Outputs

- Downwind/crosswind displacement
- Tilt/yaw rotation
- Power and thrust

Note: The procedure for modelling steady state motion and flow of floating wind farms using PyWake will be presented in TORQUE conference in May 2024, by Riccardo Riva with the title "**Incorporation of floater rotation and displacement in a static wind farm simulator**". Full paper will come out earlier.

Computational speed comparison

3. The optimization

Design of Hywind Scotland

(source: https://www.equinor.com/energy/hywind-scotland)

Problem formulation

Objective:

max AEP

Design variable:

$$\boldsymbol{L} = [x_1, x_2, \dots, x_{N_{wt}}, y_1, y_2, \dots, y_{N_{wt}}]$$

Constraints:

Wind farm boundary: $(x_i, y_i) \in S_{feasible}$, for $i = 1, 2, ..., N_{wt}$

Minimal distance between FOWTs:

$$\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \ge D_{min},$$

for $i, j = 1, 2, ..., N_{wt}$ and $i \ne j$

DTU Optimization algorithm: Random Search

- Random search is a wind farm layout optimization algorithm first proposed by Feng and Shen [1].
- Simple and easy to implement.
- Great performance in various wind farm optimization applications [3, 4].

Feng, J., & Shen, W.Z. (2015). Solving the wind farm layout optimization problem using random search algorithm. Renewable Energy, 78, 182-192.
 Feng, J., & Shen, W.Z. (2017). Design optimization of offshore wind farms with multiple types of wind turbines. Applied Energy, 205, 1283–1297.
 Brogna, R., Feng, J., Sørensen, J. N., Shen, W. Z., & Porté-Agel, F. (2020). <u>A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain</u>. Applied Energy, 259, 114189.

4. The metocean condition

Havbredey FOWF site in Scotland

- Climate Forecasting System Reanalysis
- DHI North Europe Spectral Wave model
- DHI 3D Hydrodynamic UK/North Sea model

Dataset	Source	Grid cell size	Temporal res.	Temporal extent
Winds	CFSR	~23 km	Hourly	2001-2021
Waves	SW _{NE}	~3-30 km	Hourly	2001-2021
Water level	HD _{UKNS}	~2-12 km	30 min	2001-2021
Depth- averaged	HD _{UKNS}	~2-12 km	30 min	2001-2021
Current profiles	HD _{UKNS}	~2-12 km	30 min	2018

Lon	Lat	Depth	Grid cell size HD _{uкns}	Grid cell size SW _{NE}
-5.58093°	58.84328°	85.5 m	~ 6 km	~13 km

DTU

Original wind condition ($u_{mean} = 13.58 \text{ m/s}$ **)**

- A representative current condition is selected.
- Current speed: 0.25 m/s
- Current direction: 60 deg
- Wind shear exponent: 0.14
- Turbulence intensity: 0.07

Reduced wind condition ($u_{mean} = 7.29 \text{ m/s}$ **)**

Original wind condition

AEP_gross = 1073.7503 GWh

Consider as fixed:

AEP_initi = 1050.1161 GWh, CF = 72.65 % AEP_optim = 1055.2304 GWh, CF = 73.01 % wake_loss_initi = 2.2011 % wake_loss_optim = 1.7248 %

AEP increase percentage = **0.4870 %**

Consider as floating: AEP_initi = 1047.9004 GWh AEP_optim = 1053.9225 GWh AEP increase percentage = **0.5747 %**

Reduced wind condition

 $(u_{mean} = 7.29 \text{ m/s})$

Evolutionary history of optimization

$AEP_gross = 582.0226 GWh$

Consider as fixed: AEP_initi = 545.1751 GWh, CF = 37.72 % AEP_optim = 552.2446 GWh, CF = 38.21 % wake_loss_initi = 6.3309 % wake_loss_optim = 5.1163 % AEP increase percentage = **1.2967 %**

Consider as floating: AEP_initi = 543.5741 GWh AEP_optim = 551.8396 GWh AEP increase percentage = **1.5206 %** DTU

y [m]

23 turbines under original wind condition

Floating: 2167.33 GWh Floating: 2185.24 GWh Total AEP: 2188.06 GWh Total AEP: 2172.32 GWh 96.0 6000 6000 13 95.6 5000 5000 13 - 95.5 95.4 4000 4000 \bigcirc^{21} 12 \bigcirc^3 12 21 - 95.0 95.0 [94.5 [94.5 16 95.2 [4 95.2 [9] 3000 3000 16 y [m] **O**²⁰ \bigcirc^2 11 20 2000 2000 15 95.0 \bigcirc^{10} 19 \bigcirc^{19} \bigcirc ¹ 10 1000 1000 14 94.8 11 - 94.0 0 0 94.6 93.5 -1000-10002000 3000 4000 5000 6000 -10000 1000 2000 3000 4000 5000 6000 -10000 1000 x [m] x [m]

Evolutionary history of optimization

$AEP_gross = 2245.1143 GWh$

Consider as fixed: AEP_initi = 2172.3154 GWh, CF = 71.88 % AEP_optim = 2188.0640 GWh, CF = 72.40 % wake_loss_initi = 3.2426 % wake_loss_optim = 2.5411 % AEP increase percentage = **0.7250 %**

Consider as floating: AEP_initi = 2167.3324 GWh AEP_optim = 2185.2427 GWh AEP increase percentage = **0.8264 %**

46 turbines under original wind condition

Evolutionary history of optimization

$AEP_gross = 4490.2287 GWh$

Consider as fixed:

AEP_initi = 4294.1789 GWh, CF = 71.04 %

AEP_optim = 4339.3799 GWh, CF = 71.79 %

wake_loss_initi = 4.3661 %

wake_loss_optim = 3.3595 %

AEP increase percentage = **1.0526 %**

6. Conclusions

- A methodology to account for platform motion is developed with surrogate model.
- Fast calculation of FOWF static flow and AEP can be achieved using PyWake.
- For the considered scenarios, optimization based on fixed version of modelling is feasible, since the floater displacements and motion are limited.
- With better wind condition, the relative wake loss is lower, thus, the potential of AEP improvement through layout optimization is also lower.
- For the high wind site, the relative importance of optimization of the other aspects, such as mooring systems, cables, etc. will become higher.
- More research is needed.

Acknowledgments

This research is supported by the IDEA project funded by the Danish Energy Technology Development and Demonstration Program (EUDP) under project number 134-21029. Discussions with many colleague in the IEA Wind Task 49 are also much appreciated.

EUDP C

