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INDUSTRIAL CONTEXT

* Floating multi-wind turbine assets
— Two or more full wind turbines placed on the same floating platform

— Novel system concept aiming at LCOE reduction in floating wind energy

— Capability to scale up the unit power of the asset with existing commercial wind turbines

— Single-point distribution of mooring lines commonly used to avoid wake interaction among WTs in
misaligned conditions = aiming at elimination of active yaw control system (weathervaning)

— Several industrial designs at various stages of development
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https://enerocean.com/w2power
https://aerodyn-engineering.com/products/nezzy-technology/nezzy2/?L=528
https://www.hexicongroup.com/technology

CHALLENGES

* Highly coupled and complex dynamic system [1] r
— Multiple system interactions: J

=  Among the wind turbines: structural, aerodynamic / wakes, dynamic, control
= With the floating platform
— Dependence on system configuration

* Single-point mooring configurations
— Vertical moment produced by the rotor

— Free yaw rotation

* Higher combination of failures, challenging dynamic interaction under fault events
— Shown for blade faults in simulations without considering aerodynamic interaction [2]
— Differential thrust may provoke large uncontrolled platform rotation
— May put system integrity at risk

[1] Assessment of the power obtained by a multi wind turbine floating platform, Martin-San-Roman et a/ (2022)
[2] The dynamic coupling effects of a MUFOWT (Multiple Unit Floating Offshore Wind Turbine) with partially broken blade, Bae & Kim (2015)




>How to address platform drift in production mode?_

WT control strategies [3]

WT WT
controller controller

[3] About bi-wind turbine single-point-mooring
floating offshore wind turbines dynamics and control,
Sandua-Fernandez et al (submitted to Torque2024)



>How to solve fault events and shutdowns?_

COORDINATED CONTROL

timescale
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Multi-wind turbine
asset control <
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Scheme from: [4] Towards integrated wind farm cntrol: Interfacing farm flow and power plant controls, Kolle et al (2022)
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>Upper hierarchical control level.

COORDINATED CONTROL

WT WT
controller controller




>Control override by WTC for safety reasons.

COORDINATED CONTROL




>Minor adaptation of existing WT controllers.

COORDINATED CONTROL




>Aware of all asset subcomponents.

COORDINATED CONTROL
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Control module

hydrodynamic &
(CoCobyn)

Multi-wind
turbine
simulation
Aerodynamic,
structural
coupling
Coordinated

tion Tool (MUST)
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>Demonstration Study.

« Deltawind2wT platform designed by CENER
e 2 wind turbines: 5-MW NREL reference wind turbines

e Reduced set of extreme load cases (IEC TS 61400-3-2 Ed.1)

Design Load cases (DLC) l

1.3 Power Production with ETM
(Extreme Turbulence Model)
1.6 Power Production with SSS N /”/

(Severe Sea State) DLC21 - A1l Blades to Fine

2.1 Bladel to feather, Bladel to //,/’ 20 m/s mean wind speed
fine, A1l blades to fine,
overspeed n4

2.2 Seized bladel, Overspeed nA

5.1 Emergency stop

9.1 Power production + fault
occurrence (mooring fault)




>Results/DLC21_Al1l Blades to Fine/NO Coordinated Control
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>Results/DLC21_All Blades to Fine/Coordinated Control
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>Impact of Coordinated Control of multi-wT assets.

[Effective1y command the whole system under fault events and shutdowns]

s

Avoid excessive platform drift and blade pitch activity]

\.

Ensure safety and system integrity; optimal and
| reliable performance

[Smooth integration with individual WT controllers ]

Simulation tool & control library already applied
to certification of an industrial design
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