

18 January 2024 / EERA DeepWind Conference 2024

Investigating Alternative Application Ranges for Floating Offshore Wind

Dr.Eng. Mareike Leimeister

Investigating Alternative Application Ranges for Floating Offshore Wind Technological Developments

Bailey H., Brookes K. L., and Thompson P. M., 2014. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosystems 2014, 10:8. p. 9

Investigating Alternative Application Ranges for Floating Offshore Wind Content

Should and could floating offshore wind be extended to shallow water regions?

Going beyond traditional floating

offshore wind technologies

Motivations, challenges, and co-use options

Motivations and Advantages

Environment

- Low noise pollution during installation
 - Less impact on the environment
 - No remaining structures after decommissioning

Installation, O&M, decommissioning

- Quick and rather silent installation
- Less and relatively uncritical scour issues
- Easier O&M and heavy lift operations
- Simple and complete decommissioning

Infrastructure

 For some countries more affordable option without additional bottom-fixed offshore wind infrastructure

- Use of existing harbor infrastructure
- No need for special heavy lift vessels

Should and Could FOW be Extended to Shallow Water Regions? Feasibility Criteria

Shallow-Draft FOW System Designs

Concept	Turbine-class	Draft	Water depth
MC021 (Marino Consulting)	2 MW	0.922 m	-shallow-water-floating-wind-t
no 12 (InSPIRE Ph I)	2 MW		30 m
Floatgen/Damping Pool (Ideol)	2 MW https://www.bw	7.5 m -ideol.com/en/floatge	33 m n-demonstrator
Gicon-SOF	2.3 MW	Ĭ	35 m
Eolink	5 MW		30 m
TH Floater (CTG)	5.5 MW		27 - 30 m
nezzy² (Demo/OceanX)	8.3 MW		40 m
Nerewind	10 MW		30 m
no 12 (InSPIRE Ph II)	12 MW		30 m
HiveWind	15 MW	8 m	
Floating Wind Energy Pro	pjects of the World 2023: https://	/questfwe.com/	Who will be the Ursted of Asia-Pacific floating wind power?" Wind Is Newmeet 0000 8-0 MT

First floating wind turbine off China heads for installation at CTG project off Guangdong province Photo: MYSE

Is this floating wind turbine the start of an offshore energy revolution in China?

Typhoon-proof unit made up of a MingYang turbine and Wison platform heads out for China Three Gorges 'shallow water' project off south-east Guangdong province

11 July 2021 17:08 GMT UPD 47ED 12 July 2021 7:22 GM7 By Dartus Snieckus Ф

Chinas flagship floating wind turbine is in tow for installation at developer China Three Gorges' Yangxi West Shapa phase 3, a 400MW project being built around monopile-based machines off Yangjiang: in south-east Guangdong province.

The typhoon-proof unit, a MingYang MySE5.5MW machine mated to a semisubmersible platform from Wison Offshore & Marine, will be trialled for the next six months at the site in 30 metres of water, making it an ideal candidate to test the role of floating wind turbines – generally thought-of as a technology for depths of 50 metres and greater – for 'shallow water' projects.

https://www.rechargenews.com/wind/is-this-floating-wind-turbine-the-start-of-an-offshore-energy-revolution_in-china-/2-1-1038516

Should and Could FOW be Extended to Shallow Water Regions? Feasibility Criteria

Development Challenges

Safe system operation

- Relevance of tides at site
- Motion response of floating system
 - Heave plates for reduced heave motion
 - Relevance of outer dimensions
- Additional features for low system motion
 - Active ballast system for low roll and pitch motions
 - Wave-predictive control
- System design for allowable seabed contact?
 - Imaginable for pendulum-stabilized floater concepts
 - Structural and environmental impact investigations required

https://guidetofloatingoffshorewind.com/wp-content/uploads/2023/01/saipem-hexafloat.png

Development Challenges

Feasible and functional mooring system

Challenging design of well-performing mooring system for shallow-water applications (with acceptable line tensioning)

- Declared as one of the long-term research challenges in wind energy as part of the research agenda 2016 by eawe
- Small distance between fairlead and seabed
 - ightarrow Larger chains required to deal with low inherent pre-tension
- Horizontal motion causes larger mooring line length to be lifted
 - → Stronger response to difference-frequency wave loads and risk of line break

- Higher risk of mooring line stretching (loss of catenary shape)
 - → Larger footprints required as prevention for vertical loads on anchors

Xu, K., Larsen, K., Shao, Y., Zhang, M., Gao, Z., & Moan, T. (2021). Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design. Ocean Engineering, 219, [108377].

Development Challenges

Feasible and functional mooring system

Investigations and research studies

- Shallow-water FOW mooring system with polymer springs
 - Characteristics of polymer springs
 - Stiffer response at low loads
 - More flexible response at higher loads
 - Benefits
 - Reduced peak tensions in mooring lines (~60%)
 - Reduced fatigue loads in mooring systems

Going Beyond Traditional FOW Technologies

Going Beyond Traditional FOW Technologies

The "What" and "Why"

Meaning

System

- Unmoored floating renewable energy conversion system
- Harvesting of different renewable energy sources
- Included conversion and storage

Operation

- Autonomously operating sailing vessel
- Weather routing
 - Following suitable wind trajectories
 - Avoiding severe environmental conditions
- Operational in large fleets

TLF Semi-Sub Spar

Motivation

Energy security

- Harnessing of offshore wind energy in international waters
- Opening offshore energy utilization even by landlocked countries

Environmental and economical aspects

- Small footprint (neither mooring lines nor cables)
- Optimal energy yield
- Opportunities for multi-purpose systems
 - Harvesting, conversion, and storage of different renewable energy system
 - Offshore refueling station
 - Other applications (cleaning ocean waters, research platform, ...)
- Co-use suitability

Going Beyond Traditional FOW Technologies Concepts

Floating wind farm

Manabe H., et al., 2008. Development of the floating structure for the Sailing-type Offshore Wind Farm. doi: 10.1109/OCEANSKOBE.2008.4531100.

Energy ship

Babarit A., et al., 2020. Exploitation of the far-offshore wind energy resource by fleets of energy ships - Part 1: Energy ship design and performance. Wind Energy Sci. 2020, 5, 839–853. doi: 10.5194/wes-5-839-2020.

Main sail

Jib sail

Zero-emission commercial shipping

FARWIND

Mitsui O.S.K. Lines, 2020. "Wind Hunter Project" Starts—Zero-Emission Project with Wind Propulsion and Hydrogen. https://www.mol.co.jp/en/pr/2020/20080.html.

Going Beyond Traditional FOW Technologies Concepts

chungking - stock.adobe.g

.

Current Situation

- Various (competing?) interests in ocean space
 - Offshore wind energy
 - Aquaculture
 - Oil and gas industry
 - Shipping lanes
 - Fishing industry
 - Military use
 - Ecosystem
- Most activities "close" to shore

shows demand for ocean space will grow 5fold by 2050

https://www.dnv.com/news/-coexistence-is-essential-as-dnv-report-shows-demand-for-ocean-space-will-grow-5-fold-by-2050-240871

Floating Wind and Other Renewable Energies

Multi-purpose platforms

- More power output per floating structure
- Share of logistics and infrastructure
- Beneficial effects to be investigated in more detail (e.g., wave energy converter on floating wind turbine)

Co-use concepts

- Beneficial effect (e.g., reduced energy of waves behind wave energy converters already used for coastal protection)
- Share of logistics and infrastructure

=	6 MW	12 MW	18 MW
Wave	2 MW	4 MW	6 MW
Wind	4 MW	8 MW	12 MW

https://www.inspireoffshoreenergy.com/

Series 2

Floating Wind and Aquaculture

Multi-purpose platforms

- Share of structural component
- Share of logistics and infrastructure
- Example: Floating wind-solar-aquaculture system

Zheng, X.; Zheng, H.; Lei, Y.; Li, Y.; Li, W. An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions. *Energies* **2020**, 13, 604. https://doi.org/10.3390/en13030604.

Co-use concepts

- Synergies between offshore wind and aquaculture
 - Turbine distances due to wake effects
 - Fish farm distances for securing water quality
- Share of logistics and infrastructure
- Example: Aker Solutions Ocean Cage

Floating Wind and Offshore Hydrogen

Multi-purpose platforms

- Share of logistics and infrastructure
- No need for any dynamic power cables
- Examples

 - NereHyd (Lhyfe and DORIS)

https://energycentral.com/c/cp/floating-wind-and-hydrogen-0

Co-use concepts

https://ermdolphyn.erm.com/p/1

NEREHYD

- Share of logistics and infrastructure
- No need of power cable to the shore
- Offshore hydrogen platform could serve as offshore ship refueling base (if hydrogen is further converted offshore to a suitable fuel)

Share of structural component

- - ERM Dolphyn

https://www.dorisgroup.com/wp-content/uploads/2022/10/20211130_Nerehyd.webp

Conclusions

Investigating Alternative Application Ranges for Floating Offshore Wind

Contact

Dr.Eng. Mareike Leimeister Group Global Turbine Dynamics Fraunhofer Institute for Wind Energy Systems IWES Am Seedeich 45 27572 Bremerhaven Germany

Phone +49 471 14290-384 mareike.leimeister@iwes.fraunhofer.de **Fraunhofer**

IWES

raunhofer