

Improved FOWT support structure design through Instantaneous Centre of Rotation identification

EERA DeepWind

Katarzyna ^patryniak¹, Maurizio Collu¹, Jason Jonkman², Matt Hall¹, Garrett Barter¹, Daniel Zalkind¹, Andrea Coraddu³, Hector del Pozo Gonzalez

 1 Univ. of Strathclyde, 2 NREL, 3 TU Delft

January 17, 2024

• What point/axis does a Floating Offshore Wind Turbine rotate (pitch) around?

- What point/axis does a Floating Offshore Wind Turbine rotate (pitch) around?
- · Common misconceptions in literature & practice

- What point/axis does a Floating Offshore Wind Turbine rotate (pitch) around?
- Common misconceptions in literature & practice
- It depends!

- What point/axis does a Floating Offshore Wind Turbine rotate (pitch) around?
- · Common misconceptions in literature & practice
- It depends!
- Implications: design for reduced aero/mooring loads variability, asymmetric design, etc.

Methodology

How to (numerically) identify the Instantaneous Centre of Rotation of FOWT?

Instantaneous Centre of Rotation (ICR) Definition

- Point of zero (translational) velocity at a given instant in time
- Intersection of normals to velocity vectors
- Depends on instantaneous load distribution

Figure: Construction of ICR

Instantaneous Centre of Rotation (ICR)

Example numerical result - time domain

Instantaneous Centre of Rotation (ICR)

Example numerical result - distribution

Figure: The ICR of FOWT simulated in regular waves - distribution of coordinates

Presentation order

1. Sensitivity of ICR to environmental loading

Presentation order

- 1. Sensitivity of ICR to environmental loading
- 2. Sensitivity of ICR to design variables

Presentation order

- 1. Sensitivity of ICR to environmental loading
- 2. Sensitivity of ICR to design variables
- 3. Case study (impact of ICR on FOWT responses)

Sensitivity to environmental loading

How does ICR change with changing environmental conditions?

Environmental conditions - test matrix

Table: Impact of varied environmental conditions on the ICR - conditions considered.

	Wind			Waves			Current
Group	Туре	V_s	TI	Туре	H_s	T_p	V_c
(-)	(-)	(m/s)	(-)	(-)	(m)	(s)	(m/s)
А	-	-	-	Reg	1.87	5-125	-
В	-	-	-	Reg	1.87	7.47	-
С	-	-	-	JONSWAP	1.87	7.47	-
D	Steady	3-25	-	Reg	1.87	7.47	-
E	Turbulent	11.4	0.1-0.3	Reg	1.87	7.47	-
F	-	-	-	Reg	1.87	7.47	0.5-1.2
G	Turbulent	11.4	0.17	JONSWAP	1.87	7.47	0.85

Effect of (regular) wave period

Figure: The ICR of FOWT simulated in regular waves - distribution of z coordinate

Effect of (regular) wave period

Figure: The ICR of FOWT simulated in regular waves - distribution of z coordinate

- Near-normal distribution of *z_{ICR}*
- The higher the period (lower frequency), the wider the distribution
- Mean of z_{ICR} gets closer to zero

Effect of (regular) wave period

Figure: The ICR of FOWT simulated in regular waves

Effect of (steady) wind speed

Figure: The ICR of FOWT in regular waves and steady wind - distribution of z coordinate

- The higher the wind speed, the wider the distribution
- non-monotonic median and mean

Effect of turbulence intensity

Figure: The ICR of FOWT in regular waves and turbulent wind - distribution of z coordinate

• No effect

Effect of current speed

Figure: The ICR of FOWT in regular waves and current - distribution of z coordinate

Relatively small effect

Effect of increasing loading complexity

Figure: The ICR of FOWT in normal environment - distribution of z coordinate

• The higher the complexity, the wider the distribution

Effect of increasing loading complexity

Figure: *z*_{*ICR*} range for different confidence intervals

Sensitivity to design features

How to design features influence ICR? I.e., how to "design" for ICR

Floating systems Main characteristics & design variables

Figure: OC3 spar (left), OC4 semi (right)

Table: Original values of design variables. Allvalues in [m]

	OC3 spar	OC4 semi
Draft	120.0	20.0
Waterline D	6.5	-
Platform CM	-89.92	-13.46
Offset column D	-	12.0
Heave plate D	-	24.0
Line length	902.2	835.5
Fairlead radius	5.2	40.87
Fairlead z	-70.0	-14.0
$E(E(z_{ICR}))$	-29.49	-5.03

Single variable sensitivity

OC3 spar & OC4 semi

Figure: Sensitivity of *z*_{*ICR*} to spar variables

Figure: Sensitivity of z_{ICR} to semi variables

Single variable sensitivity

Spearman correlation coefficient

Figure:
Sensitivity
matrix: ICR
and design
variables -
OC3 spar

$r_s = 1 - rac{6\sum d_i^2}{n(n^2 - 1)}$

Figure: Sensitivity matrix: ICR and design variables -OC4 semi

Single variable sensitivity

Spearman correlation coefficient

$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$

Figure: Sensitivity matrix: ICR and design variables -OC4 semi

Full factorial design

Two most significant variables

Figure: Design space - OC3 spar. Dominance of line length effect

Figure: Design space - OC4 semi. Smaller members lead to higher z_{ICR}

-2

-4

-6

-8

-10

-12

Case study

So what? How to use the knowledge of ICR

Case study OC4 semi – effect of ICR on mooring tension

Figure: Standard deviation of tension vs $E(E(z_{ICR}))$ - OC4 semi

- Standard deviation of tension drives mooring line fatigue
- High correlation with $E(E(z_{ICR}))$
- Adjust design variables to lower $E(E(z_{ICR}))$

Case study OC4 semi – setup

Change the column and heave plate diameters to shift $E(E(z_{ICR}))$ towards the fairlead (z = -14m) and reduce mooring tension amplitude.

- + Column D: $12.0 \rightarrow 10.5 \text{ m}$
- Plate D: $24.0 \rightarrow 25.59 \text{ m}$

- Volume/frontal area vertical distribution change
- Hydrodynamic load change
- Tension standard deviation driven by both surge motion and ICR

Table: Case study results. Tension: mean over the lines

Response	Original	Modified	Rel. difference
$E(E(z_{\it ICR}))$ (m)	-5.03	-7.73	53.70%
Surge std (m)	0.11	0.10	-1.48%
Line tension std (N)	1.03E+04	1.01E+04	-1.90%

• **The** centre of rotation does not exist! FOWT pitches about a point which depends on dynamic loading and can only be defined instantaneously

- **The** centre of rotation does not exist! FOWT pitches about a point which depends on dynamic loading and can only be defined instantaneously
- ICR presents near normal distribution which gets wider in more complex environmental conditions

- **The** centre of rotation does not exist! FOWT pitches about a point which depends on dynamic loading and can only be defined instantaneously
- ICR presents near normal distribution which gets wider in more complex environmental conditions
- ICR is most sensitive to design variables that tap into the main stability mechanism of a given floating concept

- **The** centre of rotation does not exist! FOWT pitches about a point which depends on dynamic loading and can only be defined instantaneously
- ICR presents near normal distribution which gets wider in more complex environmental conditions
- ICR is most sensitive to design variables that tap into the main stability mechanism of a given floating concept
- Design variables, ICR, and dynamic responses are highly correlated which complicates the analysis of specific ICR impacts.

Thank you! Q&A

