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Floating offshore wind - The theoretical coupled
analysis challenge
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* Need to calculate internal loads and response
for each component: wind turbine, tower,
platform, moorings, ...

« |t's an active system and highly coupled!

« Workflow Time domain vs Frequency domain
* Responses -> load transfer
« Strength accessment of the floater in FLS/ULS

« Open sourse code vs. commercial software

DNV



FLOATING WIND SYSTEM
DESIGN
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Project phases and

typical’ analysis

Prospection — First Bid
phase

*High-level estimates based on
previous experience / databases etc

Concept + pre-FEED

* Design Basis

* Subset of load cases

* Model validation

» Complete structural analysis

* Costing +/-10%

*Large cost estimation error

Detail design / FEED

Fabrication / installation

Operation
/deployment

scheduling
+Life extensions
* Performance monitoring

* Quality and risk inspections.
* Last minute changes!
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Frequency Domain

Rotor and
Platform
Frequency
domain

. ULS and FLS in the
frequency domain.

DNV © 22 NOVEMBER 2023

—— e e e e e e = o

|

Time Domain

Subset of runs
- Time domain analysis.

- Platform and simplified tower and
rotor.

- Normally a reduced set of simulations
100s

. ULS (pressure distribution + first
principles)

. Mostly No FLS run - Contingencies
for FLS (changing now)

Fully time Domain

- Time domain analysis.

Models as detailed as possible
Full set of load cases 20-30k

SIEMENS Gamesa
BHawC

« ULS (time domain)
«  FLS ( time domain)

Note: With large projects volume, and turbine sizes some of this is still changing!

* Inspection and Maintenance

Vestas

VTS/Flexs
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Time domain fatigue analysis of FOWT
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Why we need TD models for FOWTs?

* Wind loads are similated in TD
* Nonlinear mooring

* Flexible structure

* Nonlinear FK wave load

* Morison load

* Blade control

 hydro-servo-aero-elastic multi-descipline
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aerodynamic
loads on the

turbulent biades
wind Blue: Flexible
excitation tcti'rt?ifmgnems of the
Wave and
current
excitation .
hydlrodg.namm Red:Flexible components of
oading i
S s substructure and mooring line
Interaction of
4 mooring line with
the sea bed
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Can we still use FD models

 Wind loads and wave loads assumed to be uncorrelated

« Aerodynamic damping and excitation force can be obtained by numerical tests (forced motion,
decay tests, FFT from time series, tabulated pre-evaluated data)

« Morison drag term can be linearized by iterative approach
« Nonlinear wave load could be insignificant, especially for FLS for base structure

* Linearized coefficients can be found by differentiation in (tangential value)
» dF/dx as linear stiffness from mooring
 df/dU linear damping from blade

« Elasticity ignored or taken as separated mode and superposed with rigid modes

|f we use nonlinear model, we can solve it

 |f we use linear model, then we can understand it.
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Frequency domain models for
FOWT
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Frequency domain models, earlier studies

Souza et. al. (2019): «Freq. dependent aerodynamic damping and inertia in linearized dynamic analysis of
FWTs» Wadam, SIMA, verified against SIMA TD

Hall et. al. (2022): «An open-source FD model for FWT design optimization» RAFT(Open Source), verified
against OpenFAST

Pegalajar-Jurado, Borg, Bredmose (2018): «An efficient FD model for quick load analysis of FOWTs»,
QULAF(in house), Wamit, FAST, MoorDyn

Lemmer et. al. (2020): «Multibody modelling for concept-level FOWT design», SLOW(in house code),
FAST (for aerodynamic coe.), TurbSim for wind realization.
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Equation of Motion for FOWT

Mi(t) + C x(t) + K x(¢) = T (¢t W
_(M + Atotal) (sz +iw Ctotalx +Kx = Fexternal(w)

Atotar = Anydro (W) + Agero(w,U)

Btotar = Bhydro (W) + Baero(w,U)

Fexternar = thdro () + Faerp (0, U) [ ﬂ—

* The system added mass and damping will have two major contribution:
« Aerodynamic and hydrodynamics.
« These coefficients will now be function of:
« frequency and Wind speeds , and static inclination
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Rotor Frequency dependent contribution a, b and E,

« From Hall (2022):

Lrotor Q (t) = Qo +QuAU —x) + Qnlg g gentorque

Wind Rotor Generator
speed Speed Torque

Pitch and rotor speed PI controller:
AB = kp gAQ+ k;pf AQdt + kp %
Arg= kp, AQ +k; . [ AQdt

* Re-writing equations above in the following format (eliminate Q ) :

_(M + Aaero) wx+iw boerox + K x = faero(w)

« We arrive at the following coefficients:
1
aaero (w) = m{z [Ty — kpxTp — Hor(0)(Qy — kPxQﬂ)]};

baero () = R[Ty — kpxTp — Hor (@) (Qu — kpxQp)],
11  DNV® 22 NOVEMBER 2023 faero (a)) = (TU - HQT ((U)QU)U((U) = HUf (a))U(a))

Note on Nomenclature:

aT
Tuzﬁ
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Compute the rotor coefficients in Bladed

Calculations — X

Main i T Post Processing

Supporing Calouatons
. Modal Analysiz ‘ower Production Loadin
o Steady Operatlon LoadS indTurb:;ence 8 :UrmaIPStodp L
Earthsqtu‘take Generation D Emergency Stap
. =a -late Start
+ Constant wind speed

| dling
Werodynamic Information | ) |Parked
Hardware Test |J

Performance Coefficients |°
Steady Power Curve

CEEEE

+ Component flexibility included

Steady Parked Loads

+ Bladed prebend and sweep included Viodel Lsarsaton

Electrical perfarmance

+ Possible to include static platform pitch with Tilt Angle

-4000000 = P_BPitch Odeq platform
® Output . = P_BPitch +5deg platform
. -5000000 e P_BPitch -5deg platform
» Steady values for all variables -6000000
« Partial derivatives required to compute a, b and f, ~7000000
aT aT aQ -8000000
for example, 9U 35 U 9000000

-10000000
-11000000
-12000000

+ Easily setup from existing turbine models.

| derivative of thrust with respect to pitch angle

-
L
=
=
=
=
=
=

» ASCII output possible

5 10 15 20 23
Wind Speed (m/s)

Ty for different platform inclinations ( 0, +/-5deg)
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Total response: aerodynamic + hydrodynamic

response

» Jotal response:

Rtotal —
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Coupled response

A\ 4

SIMA/Bladed

/' Sy(w)

Fy (@), a(), b(w)

A 4

S¢(w)

WADAM

Sx(w) = ,
|Hex ()| Sz (w)+ 4

|HUX((U)|25U((U)

F7(w)
—w?(M+A+a)+io(V+B+b)+C

FU((U)
—w*M+A+a)+iw(V+B+b)+C

H(X(CU) =

Hyx(w) =

A, B :Added mass, potentoal damping (per w)

a, b:Aerodynamic inertial & damping coef. (per w)

V :Linearized viscous fluid damping (per env. state)

C :Total stiffness

Sy S¢: Spectra for wind turbulent speed & wave, as PSD(w)

Fy Fz, :Excitation force due to wind and wave (unit amp./vel.)

H.x Hyx :Response (unit wave amp./unit turbulent wind vel.)

Sx : Combined response spectrum, as PSD(w)

Post-processing for ULS/FLS
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Main assumption: Wave/wind uncorrelated, response
considered separately and can be superposed!
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11.4

SIGH, WAVE HEIGHT (M)

0.5

Way ahead for stochastic postprocessing

* FLS

 Stress being proportional to the loading
» Wind/Wave stress response spectrum can be superpositioned

LOG(NO EXPECTED + 1) HY WEIB-LN , M. ATLANTIC SCATTER

4.50

JBOO 1200

Sy (@) = |Hex (@)]”S; (@)+ |Hyx (@)]2Sy (w)

A

y

S
!
0 /

Weibull fit of the sum of Rayleigh distributions

 ULS
» Long term sectional forces

» Long term stress level for selected locations

» Postresp / Stofat for well designed/used for wave conditions
» to be incoporate with wind condition
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FD model application

« Complement to TD model in early stages of design
* Quick overview of response
 Give indication of the how design response to the changes in parameters

* Identify critical load cases

16 DNV © 22 NOVEMBER 2023
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Verification
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VolturnuSs-S + 15 MW

* [IEA 15MW + VolturnUS-S
« ROSCO controller adapter to Bladed

2D look-up mooring lines

« No 2" Order Loads . No quadratic viscous.

* Focused on power production cases
* Design Load Case 1.1 — Power production

Table 12. IEC Design Load Case Matrix

Hub Height Wind Gamma Wave Total
Wind Significant Peak
pLC | Condi- :ﬂ::d Headings |  Wave | Period lf::tﬁ Headings | settings St::s :":;
tion tf"ﬂ ) ) Height (m) | (s} 0 ) .
4.00 0.00 110 B52 1.00 0.00 B B
5.00 0.00 118 B.31 1.00 0.00 B B
B.00 0.00 1.32 B.01 1.00 0.00 B B
10.00 0.00 1.54 765 1.00 0.00 B B
12.00 0.00 1.84 7.44 1.00 0.00 8 5
11 NTM 14.00 0.00 219 746 1.00 0.00 B B
16.00 0.00 2.60 754 1.35 0.00 B B
18.00 0.00 3.06 B.05 1.59 0.00 B 5
20.00 0.00 362 B.52 1.82 0.00 B B
22.00 0.00 4.03 B.09 1.82 0.00 8 5
24.00 0.00 452 545 1.89 0.00 B B
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Freqguency vs coupled run (U = 6m/s , 12m/s)

6 m/s 12 m/s
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Coupled response and wind and wave

SRtotal = SRwave + SRwind

Wind+Wave / Coupled Pitch response

__wind ______Wave

Wind Only Turbulent Wind No Wave
Wave Only  Steady wind Irregular Wave
Coupled Turbulent Wind Irregular Wave
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Linear vs 2D lookup Moorings
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EMULF Il FOWT
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EMULF I&ll

» “Efficient numerical
methods for ultra large
floating wind turbines”

* Focus area 1:
The influence of floater flexibility
on the structural response

 Joint industry project
. Focus area 2:
y Fundmg from COWIfonden Simplified analysis methods for

motion response

« Balancing accuracy and
time

Focus area 3:
Simplified methods for structural
analysis

COWI cCowrfonden @

NTNU DNV

Accuracy

HE
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PUSARG THE RRONTIER RORNUMERICAL MODELLING

DETAILC AND EFFICIENCY _
DNV



Aerodynamic coef.
& responses

)1 Fy),a(@), bw)

e BODY1: a=0, b=0, Wave excited
« BODY2: a, b, Wave excited
« BODY3: a, b, Wind excited
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Principal stress response

Contours

B 90806

274106e+06 §

|

" IMin: 479.244

oy 2.34955e+06

1.95804e+06

= 1.56653e+06

1.17502e+06

783503

2024-01-14

391991
Model: R2

% INTERALS
)Length: [m] Force: [N] (Native)
Model Deformed (547.617)
o B934 . Resut case LLCO0063
Py . 2_2_62_63: Water depth 200, Wave dir. 0 deg, Excit. freq. 0.4934 Hz, Case 63
i : Element average D-STRESS MVONMISES
Min: 479.244 Max: 3.9156e+06
‘ Phase angle 0 deg
Limited to current set

w
+
w

4

1Ly bude of

a, b, Wave excited
a, b, Wind excited

Angulor

Frequency Lrods
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Summary
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Summary

» Frequency domain workflow for structural analysis of FOWTs proposed.

* Linearized areodynamic forces
v" added mass & damping, excitation force
v’ obtained from Bladed
v inserted into WADAM

« Short term responses & loads due to wave and wind proved to be
v uncorrelated
v’ response spectra can be superposed for stochastic postprocessing

* Long term responses & stresses can be used for FLS/ULS check

- Q&A
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