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Background

e Catenary moored substructures have natural
frequencies (surge, pitch, sway) below WF region.
e Approx. 30—170 s period

e Resonance can occur in the LF region due to
difference-frequencies.

* For IEC 61400-3-2, DLC 6.1 requires numerical
modelling of multiple 3 hour sea-state seeds,
around a 1/50 year return-period environmental

|
DNV-ST-0119: Floating wind turbine structures
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Background
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* Fixed-bed: use constrained focus 0.05 | .‘
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* Floating: greatest response is not o
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* DeepWind 2023 - Experimental tests of y .
Most-likely Extreme Response waves. A <3
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* Mixed-success. o R
3300 3400 3500 3600 3700
Time (s)

350
t[s]

355

360

365

370

Tension (kN)

i

bt

00

3400

3500
Time (s)

3600

Heagskulen
paVestlandet

3700



motivation

 How can we increase speed of the LF wave modelling process?

e Can we create a design wave group that can be run in O(100s), as
opposed to O(1000 s) to enable wider use of high-fidelity modelling of
catenary moored substructure?

* What is the maximum upper-bound to surge response?




Second-order difference forcing

- Total wave force:  g(t) = g™V (¢) + ¢ (¢)

* Difference forcing comes from linear-amplitudes: 161 0
' Z
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* Pairs of frequencies with difference f,, — fu = fo B 8 : g s
will produce forcing at fj. < |
n 6f
* Which pair of frequencies give greatest forcing :
4t ]
from spectrum? !
2 L .
e For N components, can sweep across spectrum !
. . 0 : : .
with f,,, — fn = fo. Maximum when force-phases 0 0.05 0.1 0.15 0.2
are aligned. Freq, Hz

* What about maximum motion response?
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Simplified 1DOF response

* The LF response can be represented as a 1DOF system, e.g. for surge, X:

gD t) = MXP(t)+ cXP () + kX (1)
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e This is maximised when:

(Gm — On) + (O — 0p) HPe|=0 Eq.(1)

* 1DOF model is extremely quick to run and hence can approximately evaluate
expected response from very long runs, e.g. 6hr, 12hrs.




. . Particular Dimensions ]
D Iffra Ct I O n IVI O d e | Total mass (dry), tonnes 18,123.7
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e Full QTFs from OrcaWave. Gyration radii, Rys,Ryy m  51.41 =
e Explicit time-domain model OrcaFlex (blue).
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1DOF vs Diffraction model

1000 T T T T T

Lx

* Only parameter to tune in 1DOF EoM is 5 e ||
linear damping coefficient. | | Ll (LU

Z 0

* 7% critical damping from decay tests.

-500

* Compared to 3hr random seed sea-state, ook | | | |
Hs=4m, Tp:]_2 S. 4000 5000 6000 7000 8000 9000 10000

Time, s

e 1DOF model generally in good agreement.
* Slightly under-predicts forcing.

* Agreement on LF surge response varies. 1_ A ‘ v ‘ 10 ’ ‘ | \
o /Nm (A b | Ly

2 T T T T T

X.m

* 3hr peak surge response is approx. 2 m
 1.97 m (1DOF)

2
e 1.77 m (OrcaFlex) 4000 5000 6000 7000 8000 9000 10000
Time, s
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Second-order focused response wave

Aim — phase-match to get all difference frequencies with -
fm = fu = foinphase at focus time, ts,. such that E .
maximum response occurs at t = tg,. & T |
-1 s ' . s
: : 0 005 Jfro1 0.15 0.2 0.25
First approach: i Hi
* Amplitudes defined by spectrum and scaled to match | | | x10°
Amax:Hmax/2 =3.7m 4 11
* Runtime=1/df; df=ny/df,. 3
2 10.5
* Sweep across n frequencies, f,, = f,: f, — f,, and c
phase-match corresponding diff. freq. to satisfy Eq.(1). S . . f
* Continue working outwards away from f,, to phase- ;:?1 o
match across rest of spectrum. 2 1-0.5
1DOF: —
3 OrcaFlex:
-4 1-1
Doesn’t generate an equivalent maximum response! 400 o 0 o0 200
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spreading Energy across multiple peaks

* Underlying force was periodic at f, but insignificant magnitude.

* |f we can spread the peak energy over several wave groups, the difference excitation becomes
more regular and less impulsive.

 Shift phases of adjacent frequencies, f,, and f,,; + df by using different focal times.

e Optimal algorithm needs consideration, but consider three: | fo  fot+ 1o |
|
1F |
1. Move phases of frequencies f, + adf to :
2 I
t + —; for ais even
f : 08F |
ocC f;{) | :'F fo
troc T E; for a is odd II'.N :
2. Redistribute phases so that highest amplitude components g die :
move to maximum fi out of phase relative to phase of f,. = :
0 w04 !
3. Redistribute phases so that amplitude components are :
equally distributed about the mean amplitude of each 0 |
difference frequency band, f, £ mfy: f, £ (m + 1) f,. ' : Kg
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Second-Order spread-focus waves

Spread
odd/even

[X] =28 M

Spread for
max. phase
difference,
[X] o= 2-5m

Spread
amplitudes
about mean,
IX] 0= 1.5 m

t); n(t), m
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* df = fo/10

e Greatest response when
only spread over 2-3

‘focus’ times.
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Second-Order spread-focus waves
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Time-Domain diffraction model
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* df = f, /10; Even/Odd energy spread
* Xmax for OrcaFlex, 3.6 m

* OrcaFlex shows steady build-up of response (resonance) before maximum occurs — not captured by
simple 1DOF model.

* Build-up is due to wave damping/drag damping coefficients — higher damping (e.g. other
substructures) reduce the build-up time.

* Hence a minimum total runtime is required — approx. 6-15 oscillations (depending on damping)
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Maximum upper bound?

* Achieve same difference force using
two wave components from
spectrum:
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Conclusions & future work

 1DOF model is quick to run, allowing rapid evaluation of long time-
series (small df), but does not capture damping fully.

 Single focus time, targeting surge response at f, is impulsive and so
cannot generate max. response.

* Spreading peak of wave group over several focal times increases
response, in-line with that expected from 3hr sea-state.

e Runtime reduced from 3,6, 10 hrs to <1000 s (damping dependent)

e Energy spreading algorithm to be optimised especially for small df.
e Effect of randomness?

* Method needs demonstrating in more extreme wave climate.

e Conditional second-order response wave

e Experiments planned — WINDMOOR 1:100 scale

Thanks for listening!
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