January 18, 2024 | EERA DeepWind 2024

Enhancing Wind Farm O&M withSCADA Data-Based Early Fault DetectionFeasibility and Industry Expectations <

Timo Lichtenstein, Victor von Maltzahn

"The purpose of collecting reliability data for wind farms is not to identify the exact time or cause of a failure but rather to obtain information to allow operators and maintainers to intervene before failure or manage maintenance resources."

P. J. Tavner, Offshore Wind Power – Reliability, availability and maintenance, 2021

Improving O&M With Early Fault Detection

What Is to Be Expected from Expectations?

Understanding Industry Expectations

Method Development with Focus on Practical Applicability

Earliness

How early is a prediction needed?

- Analysis of all lead times
- Desirable forecast times for process implementation

Performance

What is more important? Definite detection of all faults OR, in the case of a prediction, a certain fault detection?

- Analysis of severities and importance in processes
- Precision, Recall, F_{β} -Score

Ask the industry!

Evaluation Metrics

Assessing Early Fault Detection Methods

Precision	Recall	F _β -Score
Fraction of correctly detected faults among all predictions	Fraction of correctly detected faults	The weighted harmonic mean as a measure of performance
$P = \frac{TP}{TP + FP}$	$R = \frac{TP}{TP + FN}$	$F_{\beta} = \frac{(1+\beta^2)}{P^{-1} + \beta^2 \cdot R^{-1}}$
		"R is β times as important as P"

Expectations of the Industry – Performance Requirements

What is the Beta Weight for Each Component Category?

Expectations of the Industry – Earliness Requirements

How Early Should an Early Fault Detection Method Give an Alarm?

Challenges in SCADA Data EFD

Typical Obstacles in Research and Industry

Data Collection

- Resolution data often only in 10 min resolution
- Ownership access might be limited

Data Quality

- Varying data scope
 - SCADA operating data
 - SCADA alarm logs
 - Maintenance / service reports
- Company internal standards / naming schemes
- Data formats

Data Handling

- Laborious preprocessing of maintenance data
- Definition of failures, faulty, and deviating states

Simplified Data Value Creation Chain

Example for Early Fault Detection with SCADA Data

Simplified Data Value Creation Chain

Example for Early Fault Detection with SCADA Data

- SCADA alarm logs
- Free text service reports

States and events: ZEUS

- operating conditions
- Failure := Component Replacements

Fault Detection Example

Using Normal Behavior Modeling

Normalized Temperature

Example: Normal behavior models for main component temperatures

Multiple failures detectable, challenge to identify clear patterns

Current Challenges

For the Development of Early Fault Detection Using SCADA Data

Incomplete Datasets

- Partially incomplete data records, incorrect entries, incomprehensible comments, incorrect assignments
- Information hidden in non-disclosed datasets

Unclean Ground Truth Definitions

- Maintenance time is not necessarily failure time
 - Deriving the exact time of failure involves a great deal of effort
- Replacement not necessarily carried out due to impending failure
 - Classification problem in ground truth
- How to define a true detection and how early is a true detection a true detection?

Imbalanced Datasets

- Failures of certain components are very rare events
- All deviating states combined are a minority class

Improved digitalization in maintenance processes

Ground truth with uncertainty estimation

Deal with missing data

Methods independent of labels / ground truth

EU Data Act (September 2025 at the latest)

Summary and Recommendations for Action

For an Application of SCADA Data Early Fault Detection

Industry Expectations

- Recall is seen 1.5 times as important as precision in EFD
- Desired and indispensable prediction times for model development derived for every major component in on- and offshore maintenance

ightarrow Industry-oriented assessment framework for method suitability

Feasibility

- Normal behavior modeling of turbine components
- Most model developments seem to be using "cherry picking"
- Current data quality and scope hinder classic pattern recognition and development of methods
- Approaches must stop relying on the improvement of the data basis

