Generators Efficiency Optimization in a

CRAFT Turbine

Emelie Nordin¹, Alicia Carredano Robertsson¹, Izabella Simonsson¹, Hans Bernhoff^{1,2}

¹ Division of Electricity, Uppsala University, Sweden ² Word Wide Wind Tech AS, Fornebu, Norway

WorldWideWind 🕥

EERA DeepWind Conference 17-19 January 2024 - Trondheim Norway

Height ~ 300 m

Source: https://worldwidewind.no/

Rated Power of 42 MW Rated wind speed of 11 m/s

> Height ~ 300 m + ~ 100 m

325 m

Source: https://worldwidewind.no/

Counter Rotating Axis Floating Turbine

- Two 3-bladed turbines
- Increased weight under water
 → Improved structural stability

Main generator and Secondary machine

• Research Objective:

While maintaining cost-effectivensess and stability, can a synchronous secondary machine be replaced by a less effective asynchronous machine without major loss in produced energy?

UPPSALA

UNIVERSITE

- Secondary machine:
- Altitude compensation control
- Lower efficiency \rightarrow Lower cost
- Main generator:

CRAFT

3

Counter-rotating design

CRAFT

4

Control system - Stability test - Strategy 1

Control system - Stability test - Strategy 2

R1: Maximize energy production.R2: Rated Power.

Simulation 30 min – Power distribution between generators

Various efficiencies in generator – Yearly energy production

Results

8

11 694 households

- Simulated energy production for 1 year
- Weibull distribution for input winds

η_{main}	η_{sec}	$\Delta \eta_{main}$	$\Delta \eta_{sec}$	E [GWh]	$(E_{\eta_m\eta_s} - E_{9797})/E_{9797}$
97%	97%	0%	0%	233.895	0%
97%	93%	0%	-4%	233.815	-0.034 %
97%	83%	0%	-14%	233.611	-0.121 %

14 households

Economic Analysis

Initial investment

Synchronous: 410 MSEK = **37.3k€**

Asynchronous: no permanent magnets 410 MSEK – 24.3 MSEK = 385.7 MSEK = **34.3 k€**

312 tons Ferrite magnets x 40 SEK/kg = 12.5 MSEK 11.8 MSEK saved due to more robust control system

Generator index	η_{main}	$\eta_{secondary}$	NPV [SEK]	NPVI [%]	T [Years]
1	97%	97%	1.0288×10^9	2.4495	3.9904
2	97%	93%	1.0283×10^{9}	2.4483	3.9918
3	97%	83%	1.0513×10^9	2.6571	3.7639

Results

9

5 eurocent/kWh (electricity price) 1 eurocent/kWh (maintentance)

Conclusion

Synchronous machine (η secondary = 97%)

233.895 GWh (11 694 households)

Payback period: 3 years 51,5 weeks

Asynchronous machine (η secondary = 83%)

233.611 GWh (11 680 households)

Payback period: 3 years 40 weeks 2.2 % higher Net Present Value

Economically favourable

Conclusions

10

Include maintenance costs, more thoroughly investigate investment differences...

Thank you!

Synchronous

VS

- Higher efficiency
- More complex design
- Needs DC magnetization or permanent magnets
- Constant speed, independent of load.

- Higher investment cost

- Suitable for higher power generation

Asynchronous

- Lower efficiency
- Simpler design
- No DC excitation from an external source needed.
- Allows for more robust control

- Lower investment cost
- Not suitable for high power generation

Economic Analysis – In depth

$$PV = \sum_{n=1}^{n} \frac{\text{Total cash flow year } n}{(1+r)^n}$$

NPV = PV - I

 $T = \frac{1}{a}$

I - Initial cost of investmenta – average annual cash flow

R – discount rate (6%)

 $\mathrm{NPVI} = \frac{\mathrm{NPV}}{\mathrm{I}}$

Rotational speed of the turbines – In depth

$$\begin{cases} \dot{\omega_2} = \frac{P_{\omega_2}}{\omega_2 I_2} + \frac{\tau_{main}}{I_2} + \frac{\tau_{secondary}}{I_2} \\ \dot{\omega_1} = \frac{P_{\omega_1}}{\omega_1 I_1} - \frac{\tau_{main}}{I_1} \end{cases}$$

