

17 January 2024 / EERA DeepWind 2024

Applying triple collocation for verifying wind resource measurements and reanalysis data

Julia Gottschall, Angela Moskal*

*McGill University, CA

Overview Agenda of this presentation

- Motivation Applications of dual-collocation
- Introduction of triple collocation
- Case studies / datasets
- Results for triple collocation
- Discussion and conclusions

Motivation Application of dual collocations

Example 1: Performance verification (PV) / calibration of Floating Lidar System (FLS) at offshore met. mast

Gerrit Wolken-Möhlmann et al 2022 J. Phys.: Conf. Ser. 2362 012042, doi:10.1088/1742-6596/2362/1/012042

 Met. mast is used as reference here; but FLS data can also be compared to fixed lidar profiler (at mast platform) or reanalysis data (e.g., ERA 5)

2

Deviation (Measurement-Ref.)/Ref.

Motivation Application of dual collocations

Example 2: Validating a mesoscale model (NEWA / WRF) and ERA5 for assessing offshore wind resources

 (Downscaled) mesoscale model shows lower bias but also lower correlation to in-situ measurements .. what does qualify a numerical dataset as wind resource data source?

0.95

Motivation

Application of dual collocation (\rightarrow conventional 2D linear regression analysis)

- Implicit assumption in dual comparisons: all errors are due to the system that is being tested
- Reference system is assumed perfect (what if there are several possible references?)
- For PV / calibration, a reference uncertainty is defined but typically not considered in the regression analysis
- Is there a way to consider "scales" of data sources as well (?)

Introduction of triple collocation

As an alternative method, proposed by Stoffelen [J. Geophys. Res. 103C3, 7755-7766 (1998), DOI: 10.1029/97JC03180]

1. Start with three systems

$$x_1 = a_1t + b_1 + e_1, \qquad x_2 = a_2t + b_2 + e_2, \qquad x_3 = a_3t + b_3 + e_3$$

2. Take one system (x_1) to be the reference system

$$a_1 = 1$$
, $b_1 = 0$, $\rightarrow x_1 = t + e_1$

3. Calculate the calibration coefficients for the other two systems

$$a_2 = \frac{C_{23}}{C_{13}}, \quad a_3 = \frac{C_{23}}{C_{12}}, \quad b_2 = M_2 - a_2 M_1, \quad b_3 = M_3 - a_3 M_1$$

Introduction of triple collocation

As an alternative method, proposed by Stoffelen [J. Geophys. Res. 103C3, 7755-7766 (1998), DOI: 10.1029/97JC03180]

1. Start with three systems

$$x_1 = a_1t + b_1 + e_1, \qquad x_2 = a_2t + b_2 + e_2, \qquad x_3 = a_3t + b_3 + e_3$$

2. Take one system (x_1) to be the reference system

 $a_1 = 1$, $b_1 = 0$, $\rightarrow x_1 = t + e_1$

3. Calculate the calibration coefficients for the other two systems

 $a_2 = \frac{C_{23}}{C_{13}}, \quad a_3 = \frac{C_{23}}{C_{12}}, \quad b_2 = M_2 - a_2 M_1, \quad b_3 = M_3 - a_3 M_1$

4. Calculate the error variances

$$\sigma_1^2 = C_{11} - \frac{C_{13}C_{12}}{C_{23}}, \qquad \sigma_2^2 = C_{22} - \frac{C_{21}C_{23}}{C_{13}}, \qquad \sigma_3^2 = C_{33} - \frac{C_{13}C_{23}}{C_{12}}$$
TC output

**M* and *C* denote the mean and covariance, respectively; Method is performed iteratively as outlined in [1] Key assumptions- Linear calibration is sufficient- Reference system is calibrated and unbiased $(a_1 = 1, b_1 = 0)$ - Random error has a constant variance across the
range of measurement values $(\langle e_{\alpha}^2 \rangle = \sigma_{e_{\alpha}}^2, \ \alpha = 1, 2, 3)$ - Random errors are uncorrelated $(\langle e_{\alpha}e_{\beta} \rangle = 0, \ \alpha, \beta = 1, 2, 3)$

Case study #1 Description of datasets

Case study #1 Results for triple collocation

Highest error variance found for met. mast (not FLS), lowest for fixed lidar

 $z = Z + e_z \equiv \alpha_2 + \beta_2 T + e_z/2$

Case study #1 Results for triple collocation

		2 param			2 param			2 param
Χ	α_Y	0.106	X	α_Y	0.259	V	α_Y	0.106
	α_Z	0.911		α_Z	1.052	Λ	α_Z	0.911
V	β_Y	1.000	V	β_Y	0.995		β_Y	1.000
T	β_Z	0.920	T	β_Z	0.915	Y	β_Z	0.920
_	$\sigma_{e_X}^2$	0.136		$\sigma_{e_X}^2$	0.302		$\sigma_{e_X}^2$	0.136
L	$\sigma_{e_Y}^2$	0.090	L	$\sigma_{e_Y}^2$	0.090	Ζ	$\sigma_{e_Y}^2$	0.090
	$\sigma_{e_Z}^2$	1.430		$\sigma_{e_Z}^2$	1.431		$\sigma_{e_Z}^2$	1.430

Error variance for reanalysis data always highest, for FLS always lowest

Case study #2 Description of datasets

• Wind speed date from (3) met. masts

Jonietz Alvarez et al., Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2023-127, in review, 2023.

Case study #2 Results for triple collocation

1 parameter2 parametersModel: $X = \beta_X T + e_X,$
 $X = \beta_Y T + e_Y,$
 $Z = \beta_Z T + e_Z,$ $x = X + e_x \equiv T + e_x$
 $y = Y + e_y \equiv \alpha_1 + \beta_1 T + e_y$
 $z = Z + e_z \equiv \alpha_2 + \beta_2 T + e_z,$

<u>Ijmuiden</u>

	1 param	2 parameter
α_Y	N/A	-0.158
α_Z	N/A	-0.170
β_Y	0.952	0.965
β_Z	0.953	0.967
$\sigma_{e_X}^2$	<mark>1.456</mark>	<mark>1.450</mark>
$\sigma_{e_Y}^2$	1.034	1.035
$\sigma_{e_Z}^2$	<mark>0.436</mark>	<mark>0.436</mark>

<mark>K = met mast 92 m</mark>
Y = WRF model 100 m
Z = ERA5 model 100 m

Error variance for ERA5 lowest, for met. mast highest

Case study #2 Results for triple collocation

<mark>X = met mast</mark> Y = WRF model <mark>Z = ERA5 model</mark>

<u>Ijmuiden</u>

FINO3

FINO2

	2 parameter		2 parameter		2 parameter
α_Y	-0.158	α_Y	-0.411	α_Y	-0.282
α_Z	-0.170	α_Z	-0.366	α_Z	-0.024
β_Y	0.965	β_Y	1.061	β_Y	0.965
β_Z	0.967	β_Z	1.069	β_Z	0.953
$\sigma_{e_X}^2$	<mark>1.450</mark>	$\sigma_{e_X}^2$	<mark>1.597</mark>	$\sigma_{e_X}^2$	<mark>1.675</mark>
$\sigma_{e_Y}^2$	1.035	$\sigma_{e_Y}^2$	1.047	$\sigma_{e_Y}^2$	0.944
$\sigma_{e_Z}^2$	<mark>0.436</mark>	$\sigma_{e_Z}^2$	<mark>0.386</mark>	$\sigma_{e_Z}^2$	<mark>0.561</mark>

Discussion

- Can typical wind [energy] data applications (cf. examples) benefit from triple collocation?
- May obtained error variances be related to uncertainty estimates? ↔ Traceable uncertainty quantification requires well defined reference uncertainty.
- Possible (already tested) applications: Measure-Correlate-Predict (MCP) for long-term extrapolation and/or short-term data gap filling
- Quadrupole collocation as possible (but considerably more complex) extension

- "Dual collocation" as a standard instrument for wind [energy] data analysis .. with inherent flaws
- Triple collocation may allow for a more "objective" evaluation → possibly helping to identify which datasets are most suited to represent the relevant offshore wind resource
- Most promising applications for
 - .. combining different types of data and future resource assessment methods
 - .. as well as measurement calibration standards

