

of datasets

Clio Michel, Birgitte Rugaard Furevik, and Øyvind Breivik

Climatology of low-level jets in Scandinavia for offshore wind applications and a variety

Low-level jets (LLJ) and impact on wind energy

Norwegian Meteorological Institute \sim

Low-level jets (LLJ) and impact on wind energy

- Associated with wind shear above and below the jet
- Creates loads on the turbine (mast, nacelle, blades)
- Impacts the wind production, accelerates the fatigue of the structure

Low-level jets (LLJ) and impact on wind energy

Institute

Detection of low-level jets

Following the method of *Tuononen et al. (2015)*:

• Differences:

1) Lowest model level as surface,

2) if no local minimum above and/or below the jet, the lowest model level or the level 1500 m are considered as minima.

• Additions:

1) Polynomial fit (parabolic) around the maximum to define the height and speed,

2) Direction of the wind taken at the jet height on model levels

Tuononen et al. (2015)

Detection of low-level jets

Following the method of *Tuononen et al. (2015)*:

• Differences:

1) Lowest model level as surface,

2) if no local minimum above and/or below the jet, the lowest model level or the level 1500 m are considered as minima.

• Additions:

1) Polynomial fit (parabolic) around the maximum to define the height and speed,

2) Direction of the wind taken at the jet height on model levels

3(6)-hourly maps with height, speed and direction of low-level jets

Tuononen et al. (2015)

Three different datasets

ERA5 (ECMWF, *Hersbach et al. 2020*)

- Global reanalysis
- 0.25° spatial resolution
- 6-hourly

Three different datasets

ERA5 (ECMWF, *Hersbach et al. 2020*)

- Global reanalysis
- 0.25° spatial resolution
- 6-hourly

NORA3 (Met Norway, *Haakenstad et al. 2021*)

- Regional hindcast (aggregation of short-range) forecasts)
- 3-km spatial resolution
- 3-hourly

Three different datasets

ERA5 (ECMWF, *Hersbach et al. 2020*)

- Global reanalysis
- 0.25° spatial resolution
- 6-hourly

NORA3 (Met Norway, *Haakenstad et al. 2021*)

- Regional hindcast (aggregation of short-range) forecasts)
- 3-km spatial resolution
- 3-hourly

CERRA (SMHI / Copernicus, Schimanke et al. 2021)

- Regional reanalysis
- 5.5-km spatial resolution
- 3-hourly

Climatologies (2000-2009) for NORA3

Norwegian Meteorological Institute \sim

Differences from NORA3

ERA5 minus NORA3

CERRA minus NORA3

Potential offshore wind farms locations

Norwegian Meteorological Institute \sim

NVE

- A Nordavind A
- **B** Nordavind **B**
- C Nordavind C
- D Nordavind D
- E Nordvest A
- F Nordvest B
- G Nordvest C
- H Vestavind A
- Vestavind B
- Vestavind C
- K Vestavind D
- L Vestavind E
- M Vestavind F
- N Sørvest A
- O Sørvest B
- P Sørvest C
- Q Sørvest D
- R Sørvest E
- S Sørvest F
- T Sønnavind A

Frequencies

Probability to get a LLJ at one grid point of the region (in %):																				
NORA3	9.1	7.5	6.0	5.6	8.3	8.2	9.9	9.2	9.7	10.9	11.1	11.4	12.6	11.4	12.0	12.5	13.0	12.1	12.4	13.4
CERRA	12.5	11.5	8.9	8.2	10.9	11.4	13.8	13.7	14.4	15.2	15.1	16.2	17.6	15.4	16.4	16.7	17.4	16.3	17.0	18.0
Difference	3.4	3.9	2.9	2.7	2.6	3.2	3.9	4.5	4.7	4.4	4.1	4.8	5.0	4.0	4.4	4.2	4.4	4.2	4.6	4.6
-	Á	B	Ċ	Ď	Ė	F	Ġ	Ĥ	ĺ	j	K	Ĺ	M	Ń	Ó	P	Q	Ŕ	Ś	Ť

Frequencies

Norwegian

Institute

 \sim

Meteorological

Probability to get a LLJ within the region (in %):																				
NORA3	32.5	25.5	15.8	23.6	39.6	28.0	37.3	26.7	30.7	24.4	22.9	28.1	31.3	26.1	28.8	28.8	25.1	23.4	30.9	40.3
CERRA	37.8	31.4	19.8	27.6	42.2	33.2	42.3	32.4	36.7	29.5	27.2	34.9	37.1	31.9	36.4	35.7	31.5	29.7	39.5	47.
Difference	5.3	6.0	4.0	4.0	2.5	5.1	5.0	5.7	6.0	5.1	4.3	6.8	5.8	5.8	7.6	6.8	6.5	6.3	8.5	7.2
-	Á	В	Ċ	Ď	Ė	F	Ġ	Ĥ		j	K	Ĺ	M	Ń	Ó	P	Q	Ŕ	Ś	T

	j	K	Ĺ	M	Ń	Ó	P	Q	Ŕ	Ś	Ť
7	4.4	4.1	4.8	5.0	4.0	4.4	4.2	4.4	4.2	4.6	4.6
4	15.2	15.1	16.2	17.6	15.4	16.4	16.7	17.4	16.3	17.0	18.(
7	10.9	11.1	11.4	12.6	11.4	12.0	12.5	13.0	12.1	12.4	13.4

Temporal variability for Vestavind F

Mean low-level jet

 \sim

Mean low-level jet

Institute

 \sim

Jet height vs speed

 \sim

All grid points in a region included

Wind shear at Vestavind F

NORA3 **Region A**

1 Mean frequency, height, speed

NORA3 **Region A**

1 Mean frequency, height, speed

2 Monthly mean frequency, height, speed

- **1** Mean frequency, height, speed
- **2** Monthly mean frequency, height, speed
- **3** LLJ height and speed variability

1 Mean frequency, height, speed

2 Monthly mean frequency, height, speed

3 LLJ height and speed variability

4 LLJ direction as a function of height and speed

- **1** Mean frequency, height, speed
- **2** Monthly mean frequency, height, speed
- **3** LLJ height and speed variability
- **4** LLJ direction as a function of height and speed
- **5** Vertical wind shear around the IEA reference wind turbine (Gaertner et al. 2020)

- Detect cases with only decreasing wind (negative wind shear)
- Extend the analysis to 3-hourly ERA5
- Validate the analysis with rawinsonde data
- Origin of the low-level jet

- Detect cases with only decreasing wind (negative wind shear)
- Extend the analysis to 3-hourly ERA5
- Validate the analysis with rawinsonde data
- Origin of the low-level jet

Thank you for your attention !

Additional slide

Detection of low-level jets

Following the method of *Tuononen et al. (2015)*:

- Absolute criterion: wind speed maximum at least 2 m s⁻¹ stronger than the two surrounding minima
- Relative criterion: wind speed maximum at least 25% stronger than the two surrounding minima
- Jets below 1500 m
- If multiple, lowest jet selected
- Differences: 1) Lowest model level as surface, 2) if no local minimum above and/or below the jet, the lowest model level or the level 1500 m are considered as minima.
- Additions: 1) Polynomial fit (parabolic) around the maximum to define the height and speed, 2) Direction of the wind taken at the jet height on model levels

Tuononen et al. (2015)

3(6)-hourly maps with height, speed and direction of low-level jets

