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sl Background

* By 2050, floating wind energy grows
to 300 GWl’Z) 330,000 —e— DNV 2022 Installed & Offgrid Wood Mackenzie 2020 Bull Equinar
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* 56-fold increase (compared to 2020).
* Around 15000 wind turbines.

* LCOE for floating offshore wind from
USD 270/MWh to USD 67/MWh, 75%
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Figure 27. Long-term cumulative floating offshore wind energy deployment projections.

1) DNV 2022a. Floating Offshore Wind: The next five years.

2) DNV 2022b. Floating Wind: The power to commercialize.

3) DNV 2023. Energy Transition Outlook 2023.

4) US Dep. of Energy, Offshore Wind Market Report, 2023 Edition

GWEC: Global Wind Energy Council
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sl  [VIotivation

Some facts Potential & solutions

* Potential to reduce the cost /
improve the efficiency of
transportation to site
location.

* Need to reduce LCOE significantly.

* Large number of towing operations:

— A1 GW floating wind farm estimated
to have a minimum of 7 tow-back
per year (Brown, J., 2022. Solving the
tow-back challenge in floating wind).

* Potential to reduce the cost
of heave maintenance

* Towing speed is very low (~ 2-3 kn). ggglzatlons requiring tow-

* Towing under mild sea-states only |
(limiting Hs ~ 1.0 - 2.5 m).

* Limited number of port
infrastructures fitted for the
purpose (probably implying weather
unrestricted operations).

By:
* Increasing the towing speed.

* Expanding the operational
criteria / weather windows.

Technology for a better society
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skl FIM of semi-submersible FOWT

Figure 12 Maxmlum Y- Response for D deg tow dlrectlon
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Figure 13 Nominal Yaw- Response for D deg tow dlrectlon
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R. D. Blevins, Flow-Induced Vibration, 2 edition. Kriegerdrive, Florida, USA: Krieger Publishing Company, 1990. p— ||
A. Bokaian and F. Geoola, ‘Wake-induced galloping of two interfering circular cylinders’, Journal of Fluid Mechanics, vol. 146, pp. 383-415, Sep. 1984.

Waals, OJ, Phadke, AC, & Bultema, S. "Flow Induced Motions on Multi Column Floaters." OMAE2007-29539. San Diego, California, USA. June 10-15, 2007

* Non-circular cross-sections % Shielding effects <+ Surface effects
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il INO WINDMOOR FOWT
Scale 1:40
TABLE 1. MAIN DIMENSIONS OF THE INO WINDMOOR
PROTOTYPE FLOATER
Parameter Unit Value =2 L @, - ‘ .
Column diameter m 15.0 ' X1 V- ara ey
Column height m 31.0 = | I'm 5‘
Pontoon width m 10.0 o = yAvA T
Pontoon height m 4.0 0 DA s
Centre-centre distance m 61.0 q_‘g
Deck-Beam width m 35
Deck-Beam height m 3.5
Draft m 15.5

TABLE 3: AS-BUILT MASS CHARACTERISTICS FOR THE
FLOATER AND TOWER-RNA OF THE MODEL (FULL-SCALE

VALUES)
Unit Floater Tower-RNA Total
Mass t 12129 1994 14124
COGx m -5.800 35.218 -0.008
COGy m 0.000 0.000 0.000
KG m 5.700 103.00 19.44
| . tm®>  6.664E+06 3.997E+06 2.687E+07
Iy tm? 4.264E+06 3.997E+06 2.735E+07
L. tm?>  9.684E+06 3.716E+04 1.260E+07

Thys et al. (2021) OMAE2021-62980



INO WINDMOOR VIM CFD study

* Simplified horizontal mooring system
* Delayed Detached Eddy Simulation (DDES)
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Figure 7. a) The VIM curves measured by both A, /D,,,,, and A, /D,,4,»; b) The sway motion period.
Results from 0° and 180° current headings are plotted together in each sub-plot for direct comparisons.

Q Jiang, F,;Yin, D.; Califano, A. & Berthelsen, P. A. Application of CFD on VIM of semi-submersible FOWT: A Case Study

IOP The Journal of Physics, EERA DeepWind 2023, vol 2626, no. 012041, 2023
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sl Towing of WINDMOOR FOWT ¥

Multi hinge

Multi flap wavemaker BM2

* Towing test

* Ocean Basin

* Two configurations

VIM mitigation devices
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sl Towline and bridles (FS)

* Harbour tow

Wire d= 74 mm MBL 3365 kN (6x36 IWRC)
EA: 253061 kN

* Ocean tow Weight: 21.9 kg/m

Length: 200 m

25 m 130 mm studless chain
EA: 1443260 kN

Weight: 377.7 kg/m

Length 25m

wire d= 74 mm MBL 3365 kN (6x36 IWRC)
EA: 253061 kN
Weight: 21.9 kg/m
Length: 36 m

Source: www.damenmc.com

Technology for a better society



N-RTH
o WIND
il VIM Mitigation — from O&G to Renewable energy
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( Scale 1:40
SINTEF |

Measurements: i
* 6 DOF motions

* Towing force

2.5 m

P

* Towing speed * 5
MWL ® 0.3875m !

>

* Photo & video = 0.3875m |

A 4

50m

2.5 m

N RTH
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il Overview video of tow-out tests of FOWT

1) van L TN AN v N R A1 " y /B\ I /)
- 5 ) % s b ¥ N/ | =
AR TN R D ~ AN

;ih"’s),

\ [




sl Test program

* Decay test
— Roll
— Pitch
— Heave

* Pull-out test
— Surge

* Calm water towing test

qm

Ixxx
2XXX
AXXX
3XXX

5xxx

-

Decay test and pull-out test -

Single tow line 0.9-3.0
Single tow line + splitters 0.9-3.0
Single tow line with bridles 0.9-3.0
Single tow line with bridles + splitters 0.9-3.0

< >
< >
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WIND
milill Decay test results

A

— VIM
DOF T, rs (S) T,ws (S) —— VIM + Galloping
Surge 31.6 5.0
Sway
Heave 31.6 5.0
Roll 30.3 4.8 g
Pitch 31.3 4.95
Yaw

* Eigen periods of sway and yaw
depend on the towing speed,
significantly higher than the other
DOFs

A\ 4

VR = D Technology for a better society



SINTEF

 Standard deviations

* Tow force increases with
tow speed

* Single tow line

— Sway motion is relatively
small

— Yaw motion not sensitive
to the tested tow speeds

* With bridles

— sway motions larger than
single tow line

— Yaw motion decreases with
tow speed
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Single tow line Single tow line + splitters
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sl Concluding remarks

* During tow-out, stability and resistance of FOWT are of concern, cost-effective
operation is desired.

* FIM —VIM and galloping is an interesting, but complex FSI problem that can cause
severe issues/limits during installation, transportation and operation of FOWT.

* Free-to-rotate splitter could be a solution to reduce FIM.
* The industry requires a practical design practice/standard accounting for FIM.

* SINTEF Ocean has various tools, facilities and competences (VIVANA-TD, Towing
tanks, Ocean basin, CFD) to study FIM.

* Towing tests with waves in a long towing tank are desired.

Technology for a better society
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TOWIN JIP — FOWT towing resistance and dynamics

Objective

The objective of the TOWIN JIP is to improve the
efficiency of the towing operation of floating
offshore wind turbines (FOWT) by safely
increasing the towing speed and expanding the
operational window. Detailed objectives include:

a. Test and validate methods for accurate
prediction of towing resistance in calm water
and in waves.

b. Improve insight into the physics of VIM,
possible galloping and tow stability in calm
water, in current and in waves. Propose semi-
empirical calculation methods.

c. Test and validate methods for simulation of the
towing operation and prediction of related
dynamic motions and towing line loads.

d. Use the tools of a., b. and c. to investigate
optimum tow arrangements and mitigation
solutions.

The focus in on semi-submersible and spar type
of substructures.

Background

While the market for offshore floating wind
turbines is expected to increase exponentially in
the next decade and further on, one challenge to
be addressed is the reduction of LCOE to a
competitive value. Part of the costs are related to
towing of the FOWTs from the manufacturing site
to the wind park. Even more significant in terms of
cost will be maintenance activities involving
replacement of large components, which also
require towing to port. Due to limited number of
port infrastructures fitted for the purpose, the
travelling distance may be quite long for many
projects implying operations classified as weather
unrestricted (> 72 hours). Altogether, a significant
number of towing operations will be needed to
install and operate FOWT parks.

The existing procedures and technologies for
towing of offshore structures have been
developed within the oil and gas sector. While this
experience will certainly be transferred to the new
offshore wind industry, there are important
differences which need to be addressed, namely:
the different geometry and mass characteristics of
the new structures, the much larger number of
structures and required operations and the related
economy fundamentals. One expects a stronger
need for improved efficiency while keeping the
safety of the towing operation. This requires an
increased insight into the physics of the problem,
validated numerical procedures for design and
planning and technical solutions to improve
performance.

There are several challenges related to the
planning and execution of the tow operation. While
these are in fact partly related, or coupled, the
challenges can be listed as:

- Estimation of the extreme mooring line
tensions, due to uncertainties in prediction of
towing resistance and dynamic effects.

- Possibility of flow induced motions (FIM),
namely vortex induced motions (VIM) and
Galloping (e.g. yaw instabilities).

- Possibility of complex coupled motions trigged
by FIM and/or instabilities.

- Limited  weather  windows  complying
operational criteria.

Figure 1 Tow-out of WindFloat Atlantic FWT.
Source: EDP Renewables [1].

Methods and scope of work

The project objectives will be achieved by
combining the existing best knowledge, model
testing, field data and numerical modelling.

WP1: Prediction of towing resistance

Towing resistance has two main components
which can be estimated independently: calm water
resistance and added resistance in waves. FIM
may also add to the drag loads. A semi-empirical
model will be proposed for the first, based on the
cross flow and strip method approach. Added
resistance in waves is a 2" order load with @a mean
and a slowly varying component. The second is
important for the dynamic responses of the tow
line [2]. The loads will be based on full QTFs of
wave drift forces, with a semi-empirical method for
small forward speed effects tested recently in
another JIP [3].

WP2: Time domain FIM solver

This WP will establish design method(s) for
prediction of VIM and galloping for floating
platforms by use of semi-empirical methods. The
VIM model will be based on the VIVANA-TD load
model [4]-[6], which includes vortex induced force
terms. While the model has been validated for VIV
responses, the project will generalize it for VIM.

TOWIN JIP — FOWT towing resistance and dynamics

Some initial studies for a spar platform show
promising results [7]. A galloping model based on
direction-dependent current coefficients and
instantaneous relative velocities will be tested.

WP3: Model tests and field data

Model tests with a generic FWT in a wave basin is
the main scope of this WP. The purpose is to (a)
identify the resistance in calm water and added
resistance in waves and (b) the dynamic
responses during towing in calm water and in
waves, including conditions with FIMs.

Field data is of great value for validation of
numerical methods and will be used if made
available by some of the Participants.

WP4: Towing studies and recommendations

This WP starts with calibration and validation of
the numerical models of WP1 and WP2 based on
model tests and field data. The related force
models will also be integrated into a simulator of
the towing operation (SIMO will be used for
demonstration purposes).

Second, the numerical procedures will be
demonstrated with a representative case study to
investigate optimum tow arrangements and
mitigation solutions for excessive dynamic
responses.

Finally, the project results will be summarized into
a set of recommendations for numerical modelling
of the tow operation.

Project Deliverables

The project will have the following deliverables:

- Report with state of the art

- Model tests report

- Report with methods/tools for prediction of:
towing resistance, FIM, towing stability and
towing line loads.

- Report with optimum tow arrangements for
representative scenarios.

- Recommended practice for simulation of the
tow operation.

Organization

TOWIN is a Joint Industry Project executed by
SINTEF Ocean. A project Steering Committee will
be established comprising one member from each
Partner and with meeting twice a year.

The TOWIN JIP aims at the following participants:
- Energy companies
- Offshore contractors
- Designers of floating wind turbines
- Wind-park developers

- Classification Societies and regulatory
authorities.

The project will tentatively start during Q1 of 2024
and have a duration of 2 years.

Participation fee
- Energy companies: 60 kEUR per year.
- Other: 20 kEUR per year.

Total of two payments corresponding to two years.
The tentative total budget is 500 KEUR.
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Thank you for your attention!
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