

Innovative Benchmarking of Offshore Wind O&M Strategies via AIS Data Analysis LogReview Research Project, EERA Deepwind 2024

David Baumgärtner

Introduction

What is AIS data

- Positional data transmitted by every vessel for navigational safety reasons
- `Free' to be recorded by anyone

Insights

- Vessels that are used for O&M in wind farms
- Detailed time and path taken by all vessel

80 +

45 29

23

17

11

Introduction

What is AIS data

- Positional data transmitted by every vessel for navigational safety reasons
- `Free' to be recorded by anyone

Insights

- Vessels that are used for O&M in wind farms
- Detailed time and path taken by all vessel

Can we use AIS data to independently benchmark the logistic concepts of different offshore wind farms?

Installation of the Measurement Infrastructure for AIS and ADS-B Independent High-Resolution Data

Helgoland

- Commissioning at the beginning of October '22
- Installation at the harbour site located on the lower part of the island

FINO 1 / 3

- Installation in March '23 / April '23
- Antennas are installed at 60 meters above the platform

Installation of the Measurement Infrastructure for AIS and ADS-B Range of measurements

- AIS signals of O&M vessels over one month (May 2023)
 - The logistic O&M activities in German offshore wind farms are covered by setup

Data storage and cleaning

Reducing the data

- Store all static ship data in vessel database
- Create individual databases per vessel with time, position, speed and course

Remove outliers

Compare submitted speed with speed based on positional change

Overlay with additional data

- Add weather data (ERA5)
- Compare against operational data from Wind farm operators

EDDA FJORD

© Fraunhofer IWES

Data analysis Automatic identification of key events

Identify wind farm visits

- Time spent in the closed proximity of any wind turbine of OWP
- Vessel speed below threshold

Identify wind turbine visits

- Time spent in closed proximity of specific turbine
- Vessel speed below threshold
- Distance to turbine follows distinct path

Identify port visits

Same process as wind farm visits

C chungking - stock.adobe.co

Individual vs Cluster OWP Key figures of individual OWP

Butendiek

- Full commissioning August 2015
- 80 x SWT 3.6 (total: 288 MW)

Service port

- Rømø Havn (51 km)
- Esbjerg (65 km)

Vessels

- SOV + daughter crafts
- 2 CTVs

Individual vs Cluster OWP Key figures of OWP cluster

DanTysk

- Full commissioning April 2015
- 80 x SWT 3.6 (total: 288 MW)

Sandbank

- Full commissioning January 2017
- 72 x SWT 4.0 (total: 288 MW)

Service port

Esbjerg (86 / 105 km)

Vessels

- SOV
- 7 CTVS

Individual OWP

Usage of Service Operating Vessel – Summer months

- Performs scheduled inspection campaign
- SOV stays offshore at the wind farm for about 2 weeks

Individual OWP

Usage of Service Operating Vessel – Winter months

- Performs trouble shooting tasks, especially when CTVs cannot be used due to rough sea state
- SOV returns to port much more frequently and inconsistently

© Fraunhofer IWES

Slide 15

Individual OWP Usage of Service Operating Vessel

- Average time spent at OWP: 78%
- Average transit time to port: 4.5%
- Average time spend at port: 16%

Individual OWP

Usage of Service Operating Vessel at OWP

Stationary Time

Transfer of workers and material at turbine

7% of time

Transit Time

- Vessel speed > 1.5 knots
- 17% of time

Idle Time

- Vessel speed < 1.5 knots</p>
- 76% of time

Cluster OWP Usage of Service Vessels

SOV

- Only employed during summer months (April – October)
- Works in one wind farm at a time

CTVs

- Use the DanTysk platform for accommodation
- Remain in wind farm for about a week, if the weather allows it

Performance of different logistic concepts Individual OWP vs. OWP cluster (Jan-Oct. '23)

КРІ	individual OWP	OWP cluster	unit
turbine visit	42.5	23.4	visits per turbine
service / repair time	119	66	hours per turbine
shift length SOV	12.7	12.7	hours
shift length CTVs	7	9	hours
h _s max SOV	2.7	2.5	meters
h _s max CTVs	1.7	1.7	meters
transit to / from OWP	19'000	60'700	km (all vessels)
transit within wind farms	9'300	29'800	km (all vessels)

Despite the reduced needed or planned maintenance work, the logistic concept of the OWP cluster is less efficient

Outlook

Combination with inhouse O&M model (Offshore TIMES)

- Feed in vessel characteristics
- Virtual optimization of logistic concepts based on `real demand'

Including ADS-B Data

Extend entire methodology to include helicopter data

Including Operational Data

Validate methodology against operational data

Extend methodology on T&I

Benchmarking of turbine installation processes

Thank you for your attention !

David Baumgärtner

david.baumgaertner@iwes.fraunhofer.de

