

Offshore grid optimisation for 30 GW of Norwegian offshore wind

Harald G Svendsen, Spyridon Chapaliglou SINTEF Energy Research harald.svendsen@sintef.no

New in our study

Case study with mainly Norwegian (30 GW) perspective Emphasis: extract generic conclusions

Ocean Grid project (2022-2024)

Develop new technology, knowledge, and innovations enabling profitable deployment of offshore wind farms in Norway and internationally, both bottomfixed and floating, new green jobs and international sales.

Big question: What is the best offshore grid? Is it possible to find (reliable) answers?

NO

- Very dependent on energy system scenario
- Large uncertainties in scenarios, costs, technology availability etc.
- Computationally too complex
- Impossible to compute <u>the</u> optimal grid towards 2050

YES

- Focus on the next step (2030-2035)
- Effects of changing values of input parameters (sensitivity analysis)
- Generic characteristics and conclusions
- Use modelling and optimisation to explore a large solution space

Modelling

Mixed-integer linear progamming (MILP) Optimisation model

Minimise ALL COSTS such that ALL CONSTRAINTS are satisfied

ALL COSTS = Investment costs + Operating costs over 40 years

Investment costs = \sum hvdc costs + \sum hub costs

Operating costs = NPV{ Σ generator output × cost + Σ investment × maintenance factor }

ALL CONSTRAINTS = Linear equations and inequalities describing the system

- Power balance in all nodes
- Power output and transmission limited by (available) capacities

• ...

Variables:

- Number of cables (integer)
- Cable capacity (continuous)
- Generator dispatch
- Power flow

Exponentially increasing computation times

Power demand & production mix

Onshore grid bottlenecks

Technology in development

Meshed configurations unlikely in the near term.

We can add constraints in the optimisation model to reflect this

reices 6 prikes_D6 prices h 7020 7040 7060 7080 7100 7120 7140 7160 7000 7060 7060 7100 7120 7140 7160 Table 11: Cost data assumed in case study Bdp C^Sp C_p^L DC-mesh 0.47 5000 0 DC-direct 0.47 5000 118.28 20280 757.84 129930 Converte 59.14 10140 378.01 AC node DC node windoff solar res_oth Deutschland. Dresden Wroc Frankfurt gas (mai ********* power system scenario . Cost of HVDC transmission lines

٠

•

.

PowerGIM

1500 ⊋ ¹²⁵⁰ ⊒ 1000 Ξ 750 8 500 250 0 2 Capacity (GW)

Type

AC

- what to build •
- capacity to build •
- total costs •

- time-series
- cost and other parameters •
 - existing grid
 - candidate investments

Dealing with uncertainty

- North Sea
- 2035 2040 2050
 - Decisions must be made many years before
- Scenario for offshore wind power
 - 30 GW in Norway
 - 300 GW by 2050
- Energy system scenario based on ENTSO-E TYNDP 2022 "Distributed energy" storyline, adjusted for Norway

Input data

existing_2030 demand_2035 demand_2040 demand_2050

area	TWh/year			
BE	118.8	160.8	202.7	260.7
DE	861.9	1098.8	1335.6	1563.1
DK	55.0	68.8	82.6	109.9
NL	211.0	254.7	298.4	402.8
NO	178.0	220.0	240.0	260.0
SE	164.5	188.5	212.5	243.3
UK	464.7	627.9	791.0	927.0

This is ongoing work

These results are preliminary, and for a specific scenario only

Why so much export from Norway? NTEF Power balance

2035 2050 2040 160000 windon windoff 140000 solar 120000 res_other oil 100000 nuclear 80000 nonres_other hydro 60000 gas 40000 coal 20000 M H K H S K K M H K H S K K M H K I S K K K area area area

Mean power output (MW)

Energy mix

Power flow

BE, DE, UK: Expensive gas power

NO, SE, DK: Surplus areas

- Very large offshore grid investments are coming...
- Need for modelling **tools** and **datasets** to explore large space of possibilities
 - Prior to detailed project-specific studies
- Now
 - Main scenario analysis
- Next
 - Sensitivity analyses / focus analyses / what if..
 - Stochastic formulation
 - Extract generic conclusions
- Finally
 - Guidance for connecting 30 GW Norwegian offshore wind

