EERA DeepWind conference, 17-19 January 2024

Presenting the best offshore wind R&I since 2004

CleanOFF Hub

SINTEF ONTNU

Analyzing a grid-forming storage hub for an offshore platform cluster supplied by wind energy

Daniel dos Santos Mota, Hallvar Haugdal, Valentin Chabaud January 2024

- Several facilities with both oil and gas production
- Power demand: 50-150 MW per facility at plateau
- Heat demands: 30-70 MW per facility at plateau
- Expected future load profiles: Build-up, plateau, decline, tail
- Expected lifetime: \geq 30 years
- Distance from shore: ≥ 240 km

- Surrogate model wrapping up data from state-of-the-art aerodynamic simulations
- Encompasses wake losses and power spectral density characterizing correlated wind fluctuations between turbines arising from farm-scale turbulence
- Time series with power output
 - 1 second resolution
 - 1 hour window

SINTEF SUNTEF SINTEF Oil and Gas Platform Cluster

Platform	Load	Model Base
P1	115 MW	LEOGO
P2	115 MW	70% CPL, 30% CZL
P3	80 MW	70% CPL, 30% CZL
P4	80 MW	70% CPL, 30% CZL
P5	80 MW	70% CPL, 30% CZL
P6	80 MW	70% CPL, 30% CZL
Total load	550 MW	

Low Emission Oil and Gas Open (LEOGO) platform specification

Primary Frequency Controller

- Grid Forming Battery System
- Virtual Synchronous Machine
 - Proportional response to frequency variations
- Always active

Secondary Frequency Controller

- Centralized PI controller
- Secondary Power Setpoint
- Power Setpoint Sharing
- Always active

Secondary Frequency Reserves

 Table 1. PI regulators of the DCAC converters of the energy storage devices.

DCAC converter	Voltage $(v_{\rm ac})$	Voltage $(v_{\rm dc})$
Battery (100 MW)	Active	Not present
Fuel cell block 1 (350 MW)	Active	Active
Fuel cell block 2 (350 MW)	Active	Active
Electrolyser 1 (350 MW)	Disabled	Active
Electrolyser 2 (350 MW)	Disabled	Active

Secondary Reserves Maximum Ramping Rates

- Case 1
 - Max 35 MW/min

Case 2
 Max 350 MW/min Easier life for the batteries

Calculation of Initial Conditions - Study Cases\Study Case\Calculation of initial conditions.ComInc	
Basic Options General Reference system Execution Step Size Simulation method Execution Solver Options Image: RMS values (electromechanical transients) Closs Simulation Scan Instantaneous values (electromagnetic transients) Cance Noise Generation Network representation Image: Reference system Cance Snapshot Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Description of the sequence Image: Descrint of the sequence Image: Descrint of the sequence	te e

DCAC converter	Voltage $(v_{\rm ac})$	Voltage $(v_{\rm dc})$
Battery $(100 \mathrm{MW})$	Active	Not present
Fuel cell block 1 $(350 \mathrm{MW})$	Active	Active
Fuel cell block 2 $(350 \mathrm{MW})$	Active	Active
Electrolyser 1 $(350 \mathrm{MW})$	Disabled	Active
Electrolyser 2 $(350 \mathrm{MW})$	Disabled	Active

Calculation of Initial	Conditions - Study Cases\Study Case\Calculation of initial conditions.ComInc*	×
Basic Options Step Size Solver Options Simulation Scan	General Reference system Simulation method O O RMS values (electromechanical transients) Image: Instantaneous values (electromagnetic transients)	Execute Close Cancel
Noise Generation Real Time Snapshot	Network representation Balanced, positive sequence Unbalanced, 3-phase (ABC)	ork

Daniel Mota Researcher SINTEF Energy Research Energy Systems

M: +4792817473 E: daniel.mota@sintef.no

Technology for a better society