

[2024 EERADeepWind Conference (17, Jan., 2024 (Wed.)]

An Experimental Study for Global Performance of a FOWT using <u>Real Time Hybrid Method</u> Young Jae Oh¹, Sewan Park¹, Eung Soo Kim², Sang-Min Seok³ Kyong-Hwan Kim^{1*}

¹Korea Research Institute of Ships & Ocean Engineering (KRISO) ²POSCO

³SKecoplant

FOWT Projects in South Korea

Esgian Wind Analytics (2022)

Ryu et al. (2022)

Developer	Project	Capacity	Туре	Site	
SKecoplant & POSCO	_	1GW <	Floating	Yeonggwang & Southestern	
GIG/Total Energies/SKecoplant	BadaEnergy	1GW	(+Fixed Types)	Maenggol Channel & Geomun Island	
GIG/Total Energies	BadaEnergy (Gray Whale)	1.512GW		Ulsan	
Equinor	Firefly	804MW			
CIP	Haeuri	1.563GW	Electing type		
Shell/CoensHexicon	Munmubaram	1.26GW	Fioating type		
Korea Floating Wind	KFWind & East Blue P ower	1.32GW			
KNOC/KOEWP/Equinor	Donghae	200MW			
TOTAL		8.659GW <			

Representative Guidelines for Model Test

Document	Title
IEC61400-3-2	Wind energy generation systems-Part 3-2: Design requirements for floating offshore wind turbines
DNV-ST-0119	Floating wind turbine structures 2021
DNV-RP-0286	Coupled analysis of floating wind turbines 2019
ITTC-7.5-02-07-03.1	Floating Offshore Platform Experiments 2021
ITTC-7.5-02-07-03.2	Analysis Procedure for Model Tests in Regular Waves 2021
ITTC-7.5-02-07-03.5	Passive Hybrid Model Tests of Floating Offshore Structures with Mooring Lines 2021
ITTC-7.5-02-07-03.8	Model Tests for Offshore Wind Turbines 2021
ITTC-7.5-02-07-03.14	Analysis Procedure for Model Tests in Irregular Waves 2021

of FOW/T

Track Record of KRISO for FOWT @

Project	Scale ratio	Platform & Mooring	Year	Model Test Technique	
SHI-KRISO Joint Research	1/55	Spar Soft-spring	2012	Blade re-design	
Wave-Offshore Wind Hybrid System	1/50	Semi. 12-Point & 8-Point Catenary	2014 & 2015	Equivalent Disk & Duct Fan	
5MW Class FOWT	1/47	Spar 3-Point Catenary	2019	Blade re-design	
10MW Class FOWT (HHI Platform)	1/35	Semi. 3-Point Catenary	2021		
15MW Class FOWT (KRISO Platform)	1/42.25	Semi. 3-Point Catenary	2022		
10MW Class FOWT (SKecoplant-POSCO)	1/36	Semi _{ential} 3-Point Catenary	2022		
8MW Class FOWT (HHI Platform & Doosan WT)	1/35	Semi. 3-Point Catenary	2023	Real-Time Hybrid Method	
15MW Class FOWT (Hanwha Ocean (DSME))	-	Confidential	2024 (planned)	(Duct Fan)	
Gray Whale 3 project (Ulsan)	-	Confidential	2024 (bidding)		
15MW Class FOWT (Government funded-project)	-	TLP	2024 (planned)		
KFWind & EBP project (Ulsan)	-	Confidential	2024 (bidding)		

Model Setup

Experimental Model

Hydrostatics

		Full scale (1:1)	Model scale (1:35)	Real scale (Measured)	Error
Water de	epth [m]	70.0	70.0 3.2 115.2		_
Draf	t (m)				-
\triangle (kgf)				-
GM _τ (m)					2.8 %
GML	(m)				
kxx [m] kyy [m]					
					1.8%
kzz	[m]	Confidential			-
	Surge				-0.6%
Natural	Sway				-5.9%
	Heave				-1.8%
period [s]	Roll				2.3%
[3]	Pitch				1.7%
	Yaw				-7.0%

KRISO KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING

Model Setup

Experimental Model

Mooring lines (Extension method)

Model Setup

Experimental Model

Measuring items

KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING

KRISO

Real-Time Hybrid Method of

KRISO MiLS(Model-in-the-Loop Simulation)

Validation of KRISO

Validation of MiLS

Evaluation of Performance between KRISO MiLS & Fully-coupled Analysis

- Comparison of MiLS and Fully-coupled Analysis (Ha et al. 2021, KWEA, Ha et al. 2023, OE)
 - Repeatability of FOWT global performance based on MiLS was confirmed with various wind and wave seeds.
 - Experimental results were validated with those of fully-coupled analysis(NREL FAST).

[Repeatability (Hs = 2.46m, Tp = 6.75sec, Vw = 11.4m/s (Turbulence))]

[Compared results for thrust & yaw-moment under operational condition (Hs = 2.46m, Tp = 6.75sec, Vw = 11.4m/s (Turbulence))]

Representative Results

DLC 1.6, Wind speed = 11.4m/s, Hs = 5.42m, Tp = 12.41s Heading = 0deg., Current speed = 0.24m/s

DLC 6.1, Wind speed = 39.1m/s, Hs = 9.70m, Tp = 14.22s Heading = 30deg., Current speed = 1.00m/s

Representative Results

Research Division

KRISO

Representative Results

DLC	Case No.	Wind		Wave		Curret	Wind	Wave	Current
		[m/s]		Hs [m]	Tp [s]	[m/s]	direction (deg.)		g.)
1.2	1	5	0.833	0.5	5	-	-	0	-
	2	-	-	1.5	7	-	-	0	-
	3	11.4	1.9	1.5	7	-	-	0	-
	4	11.4	1.9	1.5	7	-	-	30	-
	5	11.4	1.9	1.5	7	-	-	60	-
	6	16	2.667	2.5	9	-	-	0	-
1.6	7	11.4	1.9	5.42	12.41	-	0	0	-
	8	11.4	1.9	5.42	12.41	0.30	0	0	0
	9	25	4.167	6.56	12.27	0.36	0	0	0
6.1	10	-	-	9.7	14.22	-	-	0	-
	11	39.1	6.517	9.7	14.22	-	0	0	-
	12	39.1	6.517	9.7	14.22	1.00	0	0	0
	13	39.1	6.517	9.7	14.22	1.00	0	30	0
	14	39.1	6.517	9.7	14.22	1.00	0	60	0
	15	39.1	6.517	9.7	14.22	1.69	0	0	0

KRISO KOREA RESEARCH INSTITUTE OF SHIPS & OCEAN ENGINEERING Eco-friendly Ocean Development Research Division

12

Summary

Model Test Result

- Model Setup: Hydrostatic values have an error within 5%, and the natural frequency of low-frequency motions has an error within 10% (Experiment vs. Design value)
- **Mooring line**: Due to water depth limitations, the length of the model mooring lines has been extended; nevertheless, the restoring forces are a fairly good match with the design values
- **RTHM**: The model test results are a fairly good match with the results of the fullycoupled analysis
- **Performance**: As compared to the DNV guidelines, it can be found that a sufficiently stable FOWT has been designed

Future Work

• **FOWT industry**: This year, model testing related to the floating offshore wind power project in Ulsan, South Korea, is scheduled. We plan to enhance the RTHM technique to conduct high-precision model tests

