

Effects of Motion, Waves, and Current on Heave Plate Hydrodynamics in Floating Wind Turbines

José Miguel Rodrigues¹

Maxime Thys¹, Julien Pelé², Raffaello Antonutti²

1. SINTEF Ocean, Norway; 2. Sofresid Engineering, France

- Model tests with a truncated segment of a support structure for a floating offshore wind turbine, focusing on different types of heave plates.
- Tests performed for different forced oscillations regimes, regular and irregular waves, and current.
- A differential approach is applied to isolate the effect of the heave plates in the fluid-structure interaction forces.
- **Hydrodynamic coefficients** are derived from test results and compared with the literature as a function of the Keulegan-Carpenter number.
- An empirical based formulation is proposed for correcting the hydrodynamic coefficients in the presence of current to account for lift effects.

Case study

• FOWT STAR1, Sofresid Engineering

Objectives

• **characterization** of the different heave plate configurations in terms of the effects on the hydrodynamic loads

Test matrix

- **configurations:** no-plate plus two different plate designs.
- forced oscillations: current and no-current
- fixed model: regular waves, irregular waves (curr/no curr)

Variation of the potential flow added mass in heave induced by the heave plates with the increase of L

Current simulated by advancing carriage

Differential approach -> inertias

Instrumentation

- Vertical position of the hexapod
- Acceleration at the hexapod's base and at lower plate of the load cell
- Wave probes
- Longitudinal position of the carriage (optical system)
- Speed as the derivative of the position

- 3-hour JONSWAP
- effective length of the section of the towing tank that was used is limited
- Segmented runs
- statistical parameters be equivalent to a continuous run

SINTEF Problem formulation and analysis procedure

Morison Equation $F_H = \rho C_A \dot{u} + \frac{1}{2} \rho A_P C_D u |u|$

Differential approach $F_P^H \cong F_P^T - F_B^T$

Added mass and Drag coefficient $\longrightarrow f(C_A, C_D) = F_P^H - \rho C_A \dot{u}(t) - \frac{1}{2} \rho A_P C_D u(t) |u(t)| \cong 0$

Relative undisturbed velocity

• Regular waves $\rightarrow u(t, P_c) = \omega A e^{kz_c} \cos(kx_c - \omega t) \longrightarrow P_c$ = centroid of the plate X_c = offset relative to the measurement point

• Irregular waves

()

discrete Fourier transform of the time series of the wave elevation measured by WAVE_2 (\mathcal{F})

$$U(\omega, P_c) = \omega \mathcal{F} e^{i(\frac{\pi}{2} - kx_c)} e^{kz_c}$$

$$\dot{U}(\omega, P_c) = \omega e^{i(\frac{\pi}{2})}$$

$$\dot{u}$$
inverse discrete fourier

Keulegan-Carpenter number

- $K_C = \frac{2\pi A}{w_s}$
- *A* = *amplitude*
- $A = \eta_0 e^{kd}$

Identification of coefficients

- Fourier averaging
- Levenberg-Maquardt method for Non-Linear Least Squares (LM)

Added Mass

Added mass coefficient: ROYAL HEAVE PLATE

Added mass coefficent: COBRA HEAVE PLATE

Drag coefficient

Current effect

Heave plate	H/D	λ/D	Kc	En	CA	Ср
Royal	2.08	33.25	14.61	0.0	2101	4.60
Royal	2.08	33.25	14.61	0.05	1919	4.62
Royal	2.08	33.25	14.61	0.1	1746	4.54
Cobra	2.08	33.25	25.13	0.0	2206	5.53
Cobra	2.08	33.25	25.13	0.1	1951	5.39
Cobra	2.08	33.25	25.13	0.2	1755	5.34

Estimated hydrodynamic coefficients for forced motion tests with and without current.

Irregular waves Current correction

Technology for a better society

- Drag coefficients from forced motion tests are consistent with the existing literature.
- Estimating the coefficients from the regular waves tests is not as robust as with the forced motions.
- There is no significant modification of the drag coefficient due to the presence of current.
- There is a small, but non negligible, modification of the added mass coefficient when in presence of current. This is attributed to the occurrence of lift effects.
- A correction term to account for the presence of current was formulated

Technology for a better society