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il Contents

* Model tests with a truncated segment of a support structure for a floating offshore wind turbine,
focusing on different types of heave plates.

- Tests performed for different forced oscillations regimes, regular and irregular waves, and
current.

* A differential approach is applied to isolate the effect of the heave plates in the fluid-structure
interaction forces.

* Hydrodynamic coefficients are derived from test results and compared with the literature as a
function of the Keulegan-Carpenter number.

* An empirical based formulation is proposed for correcting the hydrodynamic coefficients in the
presence of current to account for lift effects.

Technology for a better society



Case study and
sl objectives

Case study
* FOWT STAR1, Sofresid Engineering

Objectives

* characterization of the different heave plate configurations
in terms of the effects on the hydrodynamic loads

Test matrix

 configurations: no-plate plus two different plate designs.
* forced oscillations: current and no-current

 fixed model: regular waves, irregular waves (curr/no curr)




Variation of the potential flow added mass in heave induced by
the heave plates with the increase of L
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Setup and
sl instrumentation

Connection to hexapod

Load cell
Ta
Current simulated by advancing carriage R
. . . . 17T —— g
Differential approach -> inertias $ = SN
| T
: )
Instrumentation ] i 1
* \Vertical position of the hexapod
* Acceleration at the hexapod’s base and at CARRIAGE
lower plate of the load cell WAVE_2
«  Wave probes e “L
_ _ o ) ) " Model position:
* Longitudinal position of the carriage (optical B . Heading 0 deg
SyStem) Wave propagation ";-WAVEJ ~ Heading 90 deg
. . . @ WAVE_4
* Speed as the derivative of the position Wave maker Wave absorbing
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Environment
calibration

SINTEF

3-hour JONSWAP

effective length of the section of the
towing tank that was used is limited

Segmented runs

statistical parameters be equivalent to a
continuous run
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silill  Problem formulation and analysis procedure

Morison Equation

v

1
FH = pCAu + EPAPCDU,|U|

v

Differential approach Fpl = Fp — Fg

1
Added mass and Drag coefficient ——  f(C4,Cp) = Ff' — pCuu(t) —EpAPCDu(t)lu(t)l = ()

Relative undisturbed velocity

P. = centroid of the plate

— kzc —
° Regularwaves — u(t,R) = wAe% cos(kx —wt) — X. = offset relative to the measurement point

* Irregular waves m
. 5 . _ . Ulw,P.) = w?’el(f_ka)ekZC u
discrete Fourier transform of the time series - _
of the wave elevation measured by WAVE 2 . U(w,P.) = wei(z) . u
(F) complex vertical inverse
velocity and discrete

acceleration Fourier



sl |dentification of the hydrodynamic coefficients

Keulegan-Carpenter number

2TA
° K j—
C Wg

* A =amplitude
* A=mnge"?

|dentification of coefficients
* Fourier averaging

* Levenberg-Maquardt method for Non-
Linear Least Squares (LM)
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Added Mass

Added mass coefficient: ROYAL HEAVE PLATE
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Added mass coefficent: COBRA HEAVE PLATE
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Drag coefficient
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Current effect

Estimated hydrodynamic coefficients for forced motion tests with and without current.

Heave plate H/D /D Kc Fn Ca Co
Royal 2.08 33.25 14.61 0.0 2101 4.60
Rcryal 2.08 33.25 14.61 0.05 1919 4.62
Rcfyal 2.08 33.25 14.61 0.1 1746 4.54
Cobra 2.08 3325 25.13 0.0 2206 5.53
Cobra 2.08 33.25 25.13 0.1 1951 5.39
Cobra 2.08 33.25 2513 0.2 1755 5.34

Perloq[ Current
T N .
C, = CNC —0.0942 (2 APUC) che -

f
Area L Ke

drag effects (normal)




Irregular waves
Current correction
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sl Conclusions

* Drag coefficients from forced motion tests are consistent with the existing literature.

* Estimating the coefficients from the regular waves tests is not as robust as with the
forced motions.

* There is no significant modification of the drag coefficient due to the presence of
current.

* Thereis a small, but non negligible, modification of the added mass coefficient when
in presence of current. This is attributed to the occurrence of lift effects.

* A correction term to account for the presence of current was formulated
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