Wind turbine rotors in surge motion: Relevance of the returning wake effect for large-scale FOWT

C. W. Schulz, S. Netzband, M. Abdel-Maksoud christian.schulz@tuhh.de

Hamburg University of Technology With contributions of U. Özinan, University of Stuttgart

Motivation:

Are there unsteady contributions to the aerodynamic loads of FOWT?

If yes: Do we need to enhance our simulation models?

• Recent simulation study on surging rotors revealed

strong unsteady contributions at high motion frequencies

returning wake effect becomes relevant

Next step: Check practical relevance of returning wake effect and other unsteady phenomena for a large scale FOWT rotor

Wind Energy Science

Wind turbine rotors in surge motion: New insights into unsteady aerodynamics of FOWT from experiments and simulations

Christian W. Schulz 🖂, Stefan Netzband, Umut Özinan, Po Wen Cheng, and Moustafa Abdel-Maksoud

Abstract. An accurate prediction of the unsteady loads acting on floating offshore wind turbines (FOWT) under consideration of wave excitation is crucial for a resource-efficient turbine design. Despite a considerable number of simulation studies in this area,

- 1 Unsteady phenomena
 - Unsteady airfoil and dynamic wake effect ۲
 - Returning wake effect ۲
- 2 Simulation methods
- 3 Results: IEA 15MW in surge motion
 - Thrust force amplitude ۲
 - Analysis of three unsteady regions
 - Appearance at wave frequency ۲
- Conclusion 4

Relevant unsteady phenomena for surging wind turbines

Dynamic wake effect

- Also called dynamic inflow effect
- Changes of the inflow situation in the past act on actual induced velocity
- Only **gradual** changes of axial induced velocity
- Low pass filter effect
- Characterised by rotor reduced frequency

$$f_r = \frac{fD}{v_0}$$

Equation: Schepers, 2012

Relevant unsteady phenomena for surging wind turbines

Figure: Burton et al., 2011

Unsteady airfoil effect (Theodorsen) Attached flow 2D thin airfoil theory Circulatory / vortex shedding Leads to delayed response of lift force (exponential) Characterised by airfoil reduced frequency

$$f_a = \frac{\pi f c(r)}{\sqrt{v_0^2 + (r\Omega)^2}}$$

• Dynamic stall: Minor relevance in this case

• Known from helicopter aerodynamics

UHH

Maritime Systems Fluid Dynamics and Ship Theory

> Maximum influence on loads when surge frequency equals 3P frequency

• Characterised by

 $q_b = \frac{2\pi f}{n_b \Omega}$

- Unsteady phenomena
 - Unsteady airfoil and dynamic inflow effect
 - Returning wake effect

2 **Simulation methods**

- 3 Results: IEA 15MW in surge motion
 - Thrust force amplitude
 - Analysis of three unsteady regions
 - Appearance at wave frequency
- Conclusion 4

Simulation methods

- Blade replaced by vortex line
- 3D, unsteady wake representation
- Lift and drag forces from empirical coefficients
- Unsteady effects modelled:
 - Circulatory UA effect, dynamic inflow effect, returning wake effect

- Blade Element Momentum Theory (BEM) •
- Unsteady corrections ۲
 - Dynamic inflow ٠
 - Unsteady airfoil correction (Leishman-۲ Beddoes model)
 - Dynamic stall
- No correction for returning wake effect .

- Unsteady phenomena
 - Unsteady airfoil and dynamic inflow effect
 - Returning wake effect
- 2 Simulation methods

3 **Results: IEA 15MW** in surge motion

- Thrust force amplitude
- Analysis of three unsteady regions
- Appearance at wave frequency
- Conclusion 4

Simulation scenarios for the identification of unsteadiness during surge motion

Definition of scenarios

- Basic idea:
 - Load case set from very low to very high motion periods
 - Same variation of TSR for all cases
 - Same result for all load cases in case of no unsteady contribution
- Surge motion:
 - Constant surge velocity amplitude
 - Constant rotational speed and wind speed

Surge motion velocity Periods: approx. 3 up to 300 s

- 1 Unsteady phenomena
 - Unsteady airfoil and dynamic inflow effect
 - Returning wake effect
- **2** Simulation methods
- **3** Results: IEA 15MW in surge motion
 - Thrust force amplitude
 - Analysis of three unsteady regions
 - Appearance at wave frequency
- **4** Conclusion

IEA 15MW in surge motion: Rotor thrust amplitude

Fluid Dynamics

and Ship Theory

JHH

Maritime Systems

Rotor thrust amplitude

(@ 7 m/s uniform wind)

- Thrust normalised to case with highest period
- Plotted over motion period (log scale)
- **OpenFAST** BEMT simulations
 - Quasi-steady
 - Dynamic inflow correction
 - Dynamic inflow + unsteady airfoil corrections
- Quasi-steady model acts quasi-steady
- Significant unsteady contributions
- Analysis of unsteady regions

Simulation setup:

24
14,400
r/R = 0.04
4 D

pan MARE

IEA 15MW in surge motion: Unsteady region 1

Unsteady effects in region 1 (up to 8s)

- Minimum @ motion frequency = 3P
 - Returning wake effect
 - Not modelled in BEMT
- Findings from 2D simulations at r/R = 0.64
 - Unsteady airfoil effect is prerequisite

 $f_a > 0.02$

• Strong influence of returning wake effect when

 $q_b = \frac{2\pi f}{n_b \Omega}$ $q_b > 0.25 \dots 0.5$

• Contribution of returning wake effect at periods lower than 20s

Amplitude of rotor averaged axial induction

IEA 15MW in surge motion: Unsteady region 3

Unsteady effects in region 3 (70 to 300s)

- Both methods: gradual decrease of thrust amplitude
- Amplitude of axial induction
 - Normalised to quasi-steady case
 - Regions 1 and 2 not comparable between LL and BEMT
 - Low pass filter effect in both methods
 - Dominated by **dynamic wake effect**
 - $f_r > 0.1 \dots$?

- Unsteady phenomena
 - Unsteady airfoil and dynamic inflow effect
 - Returning wake effect
- 2 Simulation methods

3 **Results: IEA 15MW** in surge motion

- Thrust force amplitude
- Analysis of three unsteady regions
- **Appearance at wave frequency** ۲
- Conclusion 4

Realistic wave periods

TUHH Maritime Systems

Fluid Dynamics

, Ship Theory

Gulf of Maine

		rp (s)											
		1 <tp<2< th=""><th>2<tp<3< th=""><th>3<tp<4< th=""><th>4<tp<5< th=""><th>5<tp<6< th=""><th>6<tp<7< th=""><th>7<tp<9< th=""><th>9<tp<11< th=""><th> Tp>1</th></tp<11<></th></tp<9<></th></tp<7<></th></tp<6<></th></tp<5<></th></tp<4<></th></tp<3<></th></tp<2<>	2 <tp<3< th=""><th>3<tp<4< th=""><th>4<tp<5< th=""><th>5<tp<6< th=""><th>6<tp<7< th=""><th>7<tp<9< th=""><th>9<tp<11< th=""><th> Tp>1</th></tp<11<></th></tp<9<></th></tp<7<></th></tp<6<></th></tp<5<></th></tp<4<></th></tp<3<>	3 <tp<4< th=""><th>4<tp<5< th=""><th>5<tp<6< th=""><th>6<tp<7< th=""><th>7<tp<9< th=""><th>9<tp<11< th=""><th> Tp>1</th></tp<11<></th></tp<9<></th></tp<7<></th></tp<6<></th></tp<5<></th></tp<4<>	4 <tp<5< th=""><th>5<tp<6< th=""><th>6<tp<7< th=""><th>7<tp<9< th=""><th>9<tp<11< th=""><th> Tp>1</th></tp<11<></th></tp<9<></th></tp<7<></th></tp<6<></th></tp<5<>	5 <tp<6< th=""><th>6<tp<7< th=""><th>7<tp<9< th=""><th>9<tp<11< th=""><th> Tp>1</th></tp<11<></th></tp<9<></th></tp<7<></th></tp<6<>	6 <tp<7< th=""><th>7<tp<9< th=""><th>9<tp<11< th=""><th> Tp>1</th></tp<11<></th></tp<9<></th></tp<7<>	7 <tp<9< th=""><th>9<tp<11< th=""><th> Tp>1</th></tp<11<></th></tp<9<>	9 <tp<11< th=""><th> Tp>1</th></tp<11<>	Tp>1			
	<1	0,03%	4,69%	7,29%	7,02%	3,91%	5,91%	13,4 <mark>9%</mark>	6,27%	0,089			
	1< Hs <2		0,00%	0,92%	6,64%	6,85%	7,32%	7,9 <mark>0%</mark>	8,36%	0,169			
	2< Hs <3			0,00%	0,09%	0,55%	2,71%	2,9 <mark>1%</mark>	3,31%	0,15			
٦	3< Hs <4				0,00%	0,01%	0,12%	1,1 <mark>1%</mark>	1,04%	0,08			
lht	4< Hs <5						0,00%	0,1 <mark>9%</mark>	0,47%	0,04			
eic	5< Hs <6							0,0 <mark>2%</mark>	0,21%	0,01			
Ţ	6< Hs <7			1	*				0,08%	0,01			
	7< Hs <8								0,02%	0,01			
	Hs >8								0,00%	0,00			
]	Fable 26: Go	M significa	nt wave heig	ht-peak per	iod distribu	tion					

Source: Lifes50+ Report, Deliverable 1.1 Oceanographic and meteorological conditions for the design

IEA 15MW in surge motion: Rotor thrust amplitude

Fluid Dynamics

and Ship Theory

UHH

Maritime Systems

Rotor thrust amplitude (@ 7 m/s uniform wind)

- Returning wake effect is present at realistic wave periods!
 - Especially at low wind speeds
 - Reduction of thrust amplitude of up to 25%

- Unsteady phenomena
 - Unsteady airfoil and dynamic inflow effect
 - Returning wake effect
- 2 Simulation methods
- 3 Results: IEA 15MW in surge motion
 - Thrust force amplitude
 - Analysis of three unsteady regions
 - Appearance at wave frequency
- Conclusion 4

Conclusions

- Unsteady contributions to rotor loads of the IEA 15 MW from
 - Dynamic wake effect
 - Unsteady airfoil effect
 - Returning wake effect
- Unsteady phenomena can be identified by interplay of
 - Rotor reduced frequency
 - Airfoil reduced frequency
 - Ratio of motion and 3P frequency
- Returning wake effect occurs at realistic wave frequencies
- Simulation inaccuracies must be expected when using classical BEMT methods

Related publications

Acknowledgements

Two related publications and can be found at

Christian W. Schulz

https://orcid.org/0000-0002-1565-6710

New publication follows in first half of 2024

C. W. Schulz, S. Netzband, U. Özinan, P.W. Cheng, M. Abdel-Maksoud