

Floating Wind Turbine Response to directionally spread storm waves First results of the FloatLab project

Sithik Aliyar ^a, Aref Moalemi ^a, Bjarne J. Jensen ^b, Antonio Pegalajar-Jurado ^c, Johan Roenby ^d Henrik Bredmose ^a

^a DTU Wind and Energy Systems, Technical University of Denmark, Denmark ^b DHI A/S, Denmark ^c Stiesdal Offshore A/S, Denmark ^d Stromning Aps, Denmark

FloatLab (2023-2027) 20 MW Floating Wind Innovation

DTU

SIEMENS Gamesa

Stiesdal[®]

Orsted

FloatLab (2023-2027)

- Digital twin physics for 20 MW turbines
- Improved design and less materials
- Four test campaigns planned

Orsted

Offshore

Stiesdal[®]

The 6 Key Innovations of FloatLab

HAWC2

Innovation Fund Denmark

BHAWC

Open∇FOAM®

Floating Wind Turbine Response to directionally spread storm waves First results of the FloatLab project

Sithik Aliyar ^a, Aref Moalemi ^a, Bjarne J. Jensen ^b, Antonio Pegalajar-Jurado ^c, Johan Roenby ^d Henrik Bredmose ^a

^a DTU Wind and Energy Systems, Technical University of Denmark, Denmark ^b DHI A/S, Denmark ^c Stiesdal Offshore A/S, Denmark ^d Stromning Aps, Denmark

Experimental Setup

- Scale: 1:40
- Floater : Design variant of the TetraSub floater of Stiesdal Offshore
- Configuration : Three Tanks (2 at rear and 1 at the front) and one center column
- Mass : 150kg (Including RNA, Tower mass, Ballast)
- Mooring system : Inclined Taut Mooring system

Experimental setup

- DHI deep water basin : 30m X 20m X 3m
- Multidirectional wave maker: Sixty hinged wave paddles
- Absorber: Porous beach at last 6m of wave basin
- Floater location: Central column of the floater was 7.73m from the wavemaker
- Equipment: 1 Qualisys motion tracking system, 4 Mooring
- (1-DoF tension force gauges), 10 resistance-type wave gauges

Innovation Fund Denmark

Video : Floater wave interaction for irregular sea state

Test Matrix

Label	H _{mo} [m]	T _p [s]	Spreading s [°]	Phase shift
R11	0.165	2.024	0	0
I8	0.1	1.597	[0,20]	0,180
I11/F11	0.165	2.024	[0,20]	0,180
I14/F14	0.218	2.245	[0,20]	0,180
S2	0.08	2.21	25 dir	0

Duration of Testing : 45 minutes

Tests:

- Only waves
- Wave + Floater
- Wave gauge arrangement : 7 gauge arrangement to characterize the directional waves

Table : Subset of Test matrix from the Experimental campaign for the presentation I: Irregular waves, S: Swell, R: Regular waves, F: Focusing waves

Due to the proprietary nature of the floating foundation design variant, all the responses and mooring line tensions are normalized (Surge*, Heave* ML* ..)

Innovation Fund Denmark Summary 1 : Inline Vs Transverse Response

Notable observations

- Wave crest heights are smaller in the spread sea than in the nonspread sea.
- Inline responses in spread seas are smaller than those in non-spread seas (on the order of $H_{m_0} cos \sigma_{\theta}$)
- Transverse responses in spread seas are significantly larger than those in the non-spread seas (on the order of $H_{m_0} \sin \sigma_{\theta}$)

Summary 2: Harmonic Separation

Summary 2

 $Even = \frac{1}{2}(X_0 + X_{180})$

$$Odd = \frac{1}{2}(X_0 - X_{180})$$

- The linear (odd) response is in the wave frequency range
- The second-order difference forcing (even) is around the pitch natural frequency of the floater.

FloatLab

Innovation Fund Denmark

Summary 3 : Mooring line Failure

Figure: Floater response with and without mooring line failure for same sea state

Summary of Experiment findings

Inline response contains energy content in both the wave frequency range and the natural frequencies of the floater.

- □ Inline response is slightly reduced in spread seas compared to that in non-spread seas, on the order of $H_{m_0} cos \sigma_{\theta}$.
- □ The floater shows a small but non-zero transverse response in sea states with a 0-degree target spreading, mainly in the low-frequency range.
- □ Transverse motion increases as expected when spreading is introduced.
- Motion response can be separated into linear (odd) response in the wave frequency range and secondorder difference forcing (even) around the natural frequency of the floater.

Numerical reproduction

FloatStepper

 \Box FloatStepper (Open-source solver) , a non-iterative algorithm for coupling rigid body and incompressible fluid in CFD

□ Purpose : Added mass instability problem, which may arise when a light floating body interacts with a heavy fluid

□ Detailed Discussion : 'Roenby et al, *A robust algorithm for computational floating body dynamics*', Royal Society of Open Science, 2024.

□ Github : github.com/FloatStepper/FloatStepper

Some Validation cases:

Video : Added mass instability observed `Light weight circle rising in ideal fluid'

/nnovation Fund Denmark FloatStepper : CFD solver in 2D and 3D sea states

Figure: Typical Computational domain with wavemaker and wave absorption representation

OpenFOAM based Numerical wave tank :

- Wave maker type wave generation
- Active and porous wall based wave absorption
- IsoAdvector based free surface tracking (Geometric Volume of Fluid method)
- FLOATSTEPPER algorithm based six degree of equation solver
- Coupled with MoorDyn (dynamic mooring solver) for mooring evaluation
- Other than considering the mass properties RNA setup are ignored in the solver

CFD Test Matrix

Test Cases	Spreading	Case name	Time period (s)	Wave height (m)
Regular Wave	0	R11	0.165	2.024
Focusing Wave	0	F140deg	2.245	0.218
Focusing Wave	20	F1420deg	2.245	0.218
Focusing Wave	40	Fx40deg	2.245	0.218
Swell Waves	25 (direction)	S2	2.21	0.08

R11 : Regular wave interaction

Video: Regular Wave impact on floater demonstration

Figure: Non dimensionalised floater responses over regular wave and mooring tension

F140deg : Focusing wave interaction

Video: 2D focusing Wave impact on floater demonstration

Figure: Non dimensionalised floater responses over non spreaded 2D focused wave impact and mooring tension

F1420deg : Spreaded Focusing wave interaction

Video: Spreaded focused Wave impact on floater demonstration

Figure: Non dimensionalised floater responses over spreaded focused wave impact and mooring tension

Fx40deg : Focused breaking wave interaction

Video: Focused breaking wave impact on the floater with white line represents the contour of free surface at middle of the tank

Experiment — FloatStepper (CFD) 0.050.50.2Heave* Surge* (m)5 -0.2-0.05 -0.50.70.20.80.6 Pitch^* $ML1^*$ 0.6 WT3* 0.5-0.20.4-0.4 0.40.3-0.6 20 3020302030 Time Time Time

Figure: Non dimensionalised floater responses over focused breaking wave impact and mooring tension

S2 : Swell wave interaction

Video: Representation of Swell wave impact on the floater

Figure: Non dimensionalised floater responses over swell sea state and corresponding mooring tension

Summary and Conclusion

□ Investigated the responses of a 1:40 scale design variant of floating foundation to irregular, swell and bimodal sea states, emphasizing the direction and spreading characteristics of waves

□ Inline response is slightly reduced, and transverse motion increases as expected when spreading is introduced

□ Inline response of the floater contains energy content in both the wave frequency range and the natural frequencies of the floater.

□ FloatStepper (CFD solver): Extended the capabilities of the rigid body solver for simulating directional waves

□ Present CFD setup has been validated against experimental data, considering regular, focusing (with and without spreading), and swell sea states.

Floating Wind Turbine Response to directionally spread storm waves First results of the FloatLab project

Sithik Aliyar^a, Aref Moalemi^a, Bjarne J. Jensen^b, Antonio Pegalajar-Jurado^c, Johan Roenby^d Henrik Bredmose^a

^a DTU Wind and Energy Systems, Technical University of Denmark, Denmark ^b DHI A/S, Denmark ^c Stiesdal Offshore A/S, Denmark ^d Stromning Aps, Denmark