Seabird sensitivity to offshore wind farms: an individual-based modelling approach

Lila Buckingham (she/they) Elizabeth Masden, Nina Dehnhard, Per Fauchald, Arnaud Tarroux & Signe Christensen-Dalsgaard

-; TÍ -; -X Ň -; -; -; TX Ť -; -; -; T -; -14 -; -; Ť Ť -;

Aim: Model individual responses to OWFs to quantify cumulative impacts

-: -; -1 Ť -; -; -; Tí Ň Ť -; -; Ť -11 -;

-;

-;

T

-;

-;;

-;

-;

-;

-/

Ť

Ť ÷ Ť Ť -; ÷ Ť -; Ť -; -; Ť ÷ Ť Ť ÷ -; -; -/ Ť Ť Ť

Approach: Individual-based model

Ť -; Ť -; Ť -; Ť Ť Ť Ť Ť

Ť

Ť

Ť

Ť

Ť

Ť

Ť

Ť

Ť

Ť

Ť

Start of season

Model overview

1) Movement

2) Energetics

Case study:

The impacts of one offshore wind farm on two species of seabirds

Black-legged kittiwake *Rissa tridactyla* Collision Common guillemot *Uria aalge* Displacement

Geolocation-immersion data

Credit: Andrew

Geolocation-immersion data

Estimated population-level:

- distribution
- activity budgets

For each day of the non-breeding season

Flight

Geolocation-immersion data

Estimated population-level:

- distribution
- activity budgets

For each day of the non-breeding season

Collision risk

- Modelled using the stochastic Collision Risk Model (sCRM; Band 2012; Masden 2015, McGregor et al. 2018)
- Collision \rightarrow death

Displacement

- Modelled using values of displacement probability (Peschko et al. 2020)
- Added an energetic cost of displacement equivalent to +30 minutes flight

Simulations

For each individual:

1) daily movement

- yesterday's location
- today's distribution
- time flying/swimming \rightarrow max distance travelled

Simulations

For each individual:

1) daily movement

- yesterday's location
- today's distribution
- time flying/swimming \rightarrow max distance travelled

2) OWF interaction

- kittiwake: collision \rightarrow death
- guillemot: displacement \rightarrow energetic cost

3) OWF impact

- kittiwake: mortality due to collision
- guillemot:
 - energy expenditure
 - end of season mass

Day 2

Day 1

Guillemots – Sklinna Kittiwakes – Ålesund

Trollvind offshore wind farm

- 22.7% overlapped with footprint at least once
- sCRM predicted a very low collision probability (< 0.001%)
 - \rightarrow very low collision rate

- 7.1% overlapped with footprint at least once
- Displacement effects for 6.1% of population
- Negligible mean change in mass
 - mean = -2.33g
 - standard deviation = 11.4
- But potentially significant individuallevel impacts

- 7.1% overlapped with footprint at least once
- Displacement effects for 6.1% of population
- Negligible mean change in mass
 - mean = -2.33g
 - standard deviation = 11.4
- But potentially significant individuallevel impacts

Change in end of nonbreeding season mass (g)

- Negligible impact on Ålesund kittiwakes
- Individual-level effects on Sklinna guillemots
 - →breeding/survival?

Next steps

Created a spatially-explicit IBM for assessing OWF impacts on seabirds in the non-breeding season

- 1) Other populations
- 2) Multiple OWFs and other stressors
- 3) Other species

Energetic consequences of displacement?

Thank you to all our collaborators:

MARCIS is a collaborative research project between research institutes, industry, management authorities, NGOs and interest groups. The project will contribute to ecosystem-based management of marine spatial use and provide a decision support tool for balancing interests and conflicts in planning processes.

Read the report:

Layton-Matthews et al. 2023. *Development of a Cumulative Impact Assessment tool for birds in Norwegian Offshore Waters: Trollvind OWF as a case study.*

Lila.Buckingham@nina.no