

Reference Design Cases for Floating Offshore Wind Arrays

Fiona Devoy McAuliffe^{1*}, Ericka Lozon², Matthew Hall², Muk Chen Ong³, Chern Fong Lee³, Ju Feng⁴, Milad Moghtadaei⁵, Chris Wright⁵

Work Package 2 contributors: Matteo Baudino Bessone⁶, Malcolm Bowie⁷, Michel Castagne⁸, Lars Froyd⁹, Zhiyu Jiang¹⁰, Junho Lee¹¹, Lin Li³, Mohammad Youssef Mahfouz¹², Maxime Merle⁸, Madhan Mohan¹³, Miho Park¹⁴, Yann Poirette⁸, Vishnu Rajasree¹⁵, Yong-Yook Kim¹⁴, Ilmas Bayati¹⁶, Thor Snedker¹⁶, Daniel O'Connell¹⁷, Erin Bachynski-Polić¹⁵, Thomas Michel Sauder¹⁵

¹ University College Cork, ²NREL, ³University of Stavanger, ⁴Technical University of Denmark, ⁵Gavin and Doherty Geosolutions, ⁶TU Delft, ⁷First Energy Development, ⁸IFPEN, ⁹4Subsea, ¹⁰University of Agder, ¹¹Texas A&M University, ¹²University of Stuttgart, ¹³Interocean, ¹⁴Institute for Advanced Engineering, ¹⁵NTNU, ¹⁶PEAK Wind, ¹⁷BOEM

*f.devoymcauliffe@ucc.ie

Introduction

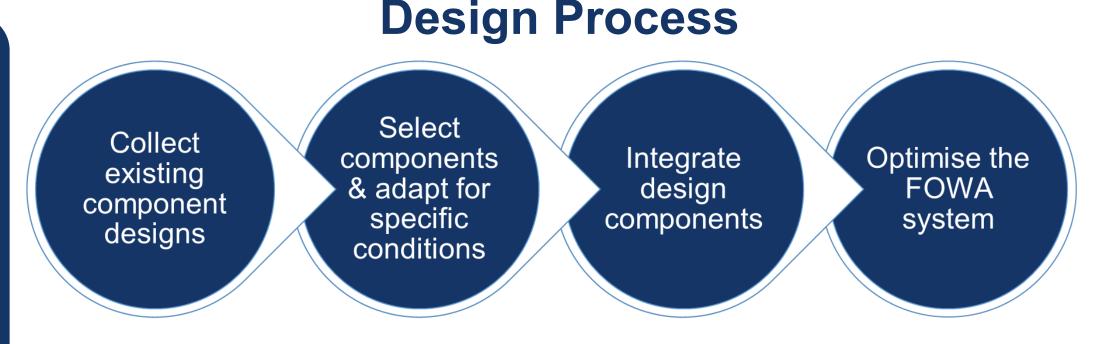
International Energy Agency (IEA) Wind Task 49, Integrated Design of Floating Wind Arrays (IDeA), is developing several reference floating offshore wind array (FOWA) designs in its Work Package 2 to:

- Facilitate research and development activities and a scale change from pilot FOWAs to commercial ones
- Provide standardized baselines upon which different innovations can be developed and their benefits compared.

Design engineering and cost inputs will be made open access

Design Considerations

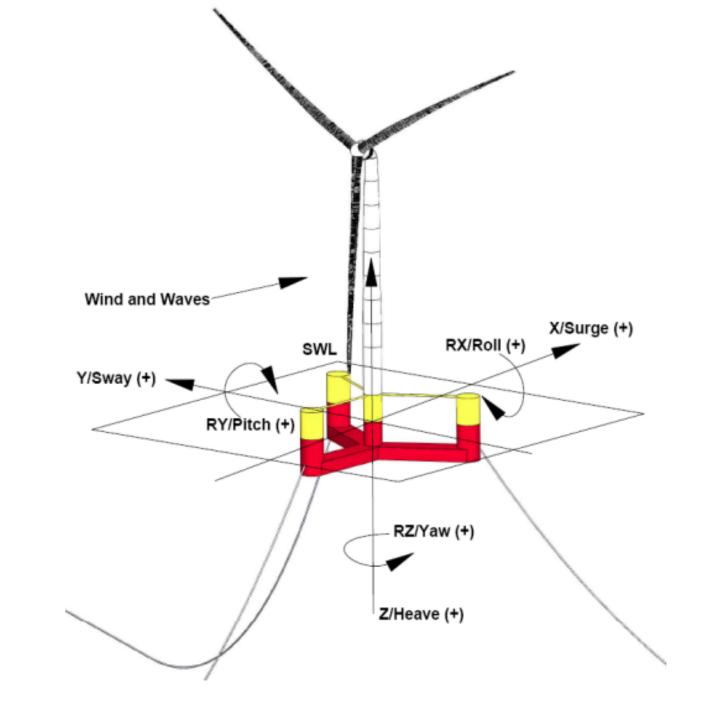
OBJECTIVES: Reference FOWAs should a) represent the current state of the art, b) be economic, and c) achieve a good level of performance.


PARAMETERS: Focus on **array-level design** aspects and how different elements are integrated => incorporate existing designs for components or subsystems where possible.

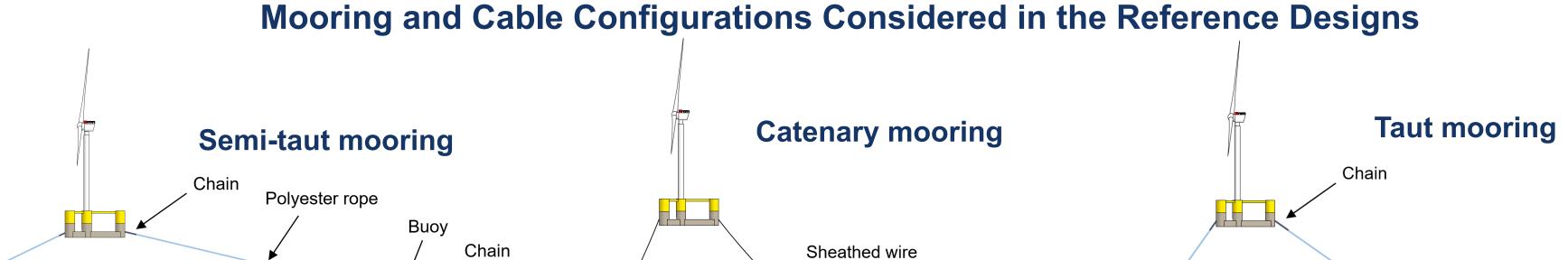
REQUIREMENTS and CONSTRAINTS: Cover the limit states required by the design standards for the technology selected and consider:

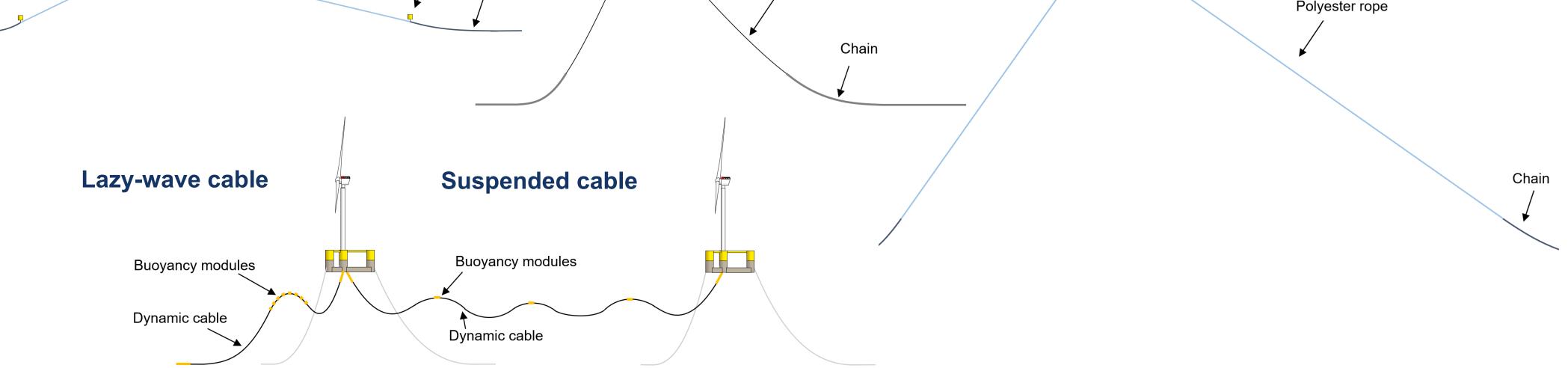
Design Scope

Extensive consultations determined what would be of most interest and relevance to the anticipated global pipeline of FOWA projects, including:


- . Use water depth as the key differentiating factor
- Use existing designs for wind turbine and substructure [2]
- Design the mooring systems, power cables, and overall array layouts.

- Site characterisation and metocean conditions [1]
- Coastal infrastructure and logistics
- Cost and competitiveness.


OPTIMISATION: Focus on performance and cost benefits, not logistics.


VolturnUS-S semisubmersible and IEA 15-MW reference wind turbine [2]

Scenario**	Shallow	Intermediate	Deep
Array capacity	67 x 15 MW = 1GW		
Depth (m)	60	300	800
Seabed		Generic	
Array layout	Rectangular		
Platform type	Semisubmersible (steel) [2]		
Mooring configuration	Semi-taut chain and polyester rope	Catenary chain and wire	Taut polyester rope
Anchors	Drag embedment	Drag embedment	Suction pile
Cable configuration	Lazy wave	Lazy wave	Suspended

**Later design variants will consider, e.g., depth gradients, seabed variations impacting layout and anchor positions, shared anchors, shared moorings, spar, and tension-leg platform options.

References

- [1] Specified by reference sites produced in IEA Wind Task 49 Work Package 1
- [2] Allen, C., A. Viselli, H. Dagher, A. Goupee, E. Gaertner, N. Abbas, M. Hall, G. Barter. 2020. Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine. Golden, CO: National Renewable Energy Laboratory (NREL). NREL/TP-5000-76773. https://www.nrel.gov/docs/fy20osti/76773.pdf.

Acknowledgements

Ireland's participation has been supported with financial contribution from the Sustainable Energy Authority of Ireland under the SEAI Research, Development & Demonstration Funding Programme 2022, Grant number 22/RDD/804. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy Efficiency and Renewable Energy Wind Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.