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Efficient multi-objective black-box optimisation
with limited computational budget Ny, g,

* Advanced model predictive controllers for wind farm control
can be beneficial as it allows for constraints and multi-
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* However, tuning the resulting predictive controller is hard in
practice as the closed-loop solution is usually not known or
cannot be analytically derived [1].

 Recent advances in Bayesian optimisation show promise as an

efficient black-box optimisation tool for even high-
dimensional optimisation problems [2].

g, ..., 0]

n )

* Given these premises we propose a controller auto-tuning > é{affe};}iilmfgfiﬁir
strategy based on

1. Data-efficient Bayesian optimisation for single- and multi-
objective optimisation of closed-loop controllers.

2. Leveraging high-dimensional Bayesian optimisation for Fig. 1: A schematic of the proposed method for optimising constrained closed-loop wind farm systems providing secondary
frequency regulation with model predictive control. By collecting limited samples of the closed-loop costs J for the current choice

handling many tuning parameters in wind farm - _ : e ,
of closed-loop system specific parameters 6, Pareto-optimal 6 can be approximated despite limited computational budget.

controllers that provide secondary frequency regulation.

Idea: Bayesian optimisation for data-efficient auto-tuning of controllers

1. Run closed-loop experiments with a given controller design/configuration 8 to gather closed-loop performance measures y, for example tracking or dynamic loading.
2. Based on previous data, train a Gaussian process for each performance measure to model the closed-loop interactions between current controller and system.
3. lteratively, based on the trained Gaussian process, compute the posterior to derive the next search space based on an acquisition function.
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1. Based on a simulator or real-life setup, apply the controller with e Based on each performance measure y, train a probabilistic e Leverage the posterior of the probabilistic surrogate model to estimate the next 6 untill the
some current design parameters 6. surrogate model (commonly a Gaussian process). optimal 8 is estimated with an acquisition function for balancing exploitation vs exploration.
* 0 can encompass both controller tuning constants but also —
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Fig. 2: Example 1d Gaussian model of y given some samples of 6. Fig. 3: Example plot of 1d acquisition function (given the GP from Fig.2.)

High-dimensional Multi-objective case study — tracking and dynamic loading

 Based on a model predictive controller from [3] with 28 tuneable parameters, the proposed method is validated in simulations using WFsim [4].
* The performance measures that is considered is tracking and dynamic loading with a computational budget for Bayesian optimisation of 100 with 5 replicates.
* From closed-loop experiments, Pareto fronts can be estimated to help some operator to decide on the optimal controller parameterisation with no prior knowledge.

e Utilising sparse-axis aligned subspaces (SAAS) priors improve the results with the notion of automatic relevance (deciding the importance on the go from data).
* Higher relevance results in lower values in the lengthscales ¢ in the Gaussian process.

e Results in an improved Pareto front. 8 o
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Fig. 4: Scatterplots of the resulting Pareto-front for optimising cumulative tracking and dynamic load. Fig. 5: Boxplots of the resulting lengthscales in the SAAS priors for deriving automatic relevance .
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