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1. Run closed-loop experiments with a given controller design/configuration 𝜃 to gather closed-loop performance measures y, for example tracking or dynamic loading. 
2. Based on previous data, train a Gaussian process for each performance measure to model the closed-loop interactions between current controller and system.
3. Iteratively, based on the trained Gaussian process, compute the posterior to derive the next search space based on an acquisition function.

Idea: Bayesian optimisation for data-efficient auto-tuning of controllers 

Fig. 1: A schematic of the proposed method for optimising constrained closed-loop wind farm systems providing secondary 
frequency regulation with model predictive control. By collecting limited samples of the closed-loop costs J for the current choice 
of closed-loop system specific parameters ϑ, Pareto-optimal ϑ can be approximated despite limited computational budget. 

• Advanced model predictive controllers for wind farm control 
can be beneficial as it allows for constraints and multi-
objective control objectives.

• However, tuning the resulting predictive controller is hard in 
practice as the closed-loop solution is usually not known or 
cannot be analytically derived [1].

• Recent advances in Bayesian optimisation show promise as an 
efficient black-box optimisation tool for even high-
dimensional optimisation problems [2].

• Given these premises we propose a controller auto-tuning 
strategy based on

1. Data-efficient Bayesian optimisation for single- and multi-
objective optimisation of closed-loop controllers.

2. Leveraging high-dimensional Bayesian optimisation for 
handling many tuning parameters in wind farm 
controllers that provide secondary frequency regulation.

Motivation

• Based on a model predictive controller from [3] with 28 tuneable parameters, the proposed method is validated in simulations using WFsim [4].
• The performance measures that is considered is tracking and dynamic loading with a computational budget for Bayesian optimisation of 100 with 5 replicates.
• From closed-loop experiments, Pareto fronts can be estimated to help some operator to decide on the optimal controller parameterisation with no prior knowledge.
• Utilising sparse-axis aligned subspaces (SAAS) priors improve the results with the notion of automatic relevance (deciding the importance on the go from data).
• Higher relevance results in lower values in the lengthscales ѱ in the Gaussian process.
• Results in an improved Pareto front.

High-dimensional Multi-objective case study – tracking and dynamic loading 

Fig. 4: Scatterplots of the resulting Pareto-front for optimising cumulative tracking and dynamic load. Fig. 5: Boxplots of the resulting lengthscales in the SAAS priors for deriving automatic relevance .
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1. Based on a simulator or real-life setup, apply the controller with 

some current design parameters 𝜃.
• 𝜃 can encompass both controller tuning constants but also 

binary decisions such as whether to use a model predictive 
controller or PID.

2. Collect closed-loop performance measure y.
• When using model predictive controller, plant/model 

mismatch is common. The resulting input is thus sub-
optimal and the closed-loop consequence of applying the 
controller is different from the open-loop calculations.

• Based on each performance measure y, train a probabilistic 
surrogate model (commonly a Gaussian process).

• Leverage the posterior of the probabilistic surrogate model to estimate the next 𝜃 untill the 
optimal 𝜃 is estimated with an acquisition function for balancing exploitation vs exploration.

Fig. 2: Example 1d Gaussian model of y given some samples of 𝜃. Fig. 3: Example plot of 1d acquisition function (given the GP from Fig.2.)


