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Introduction Experiment with a flexible floating structure
Design tools for floating wind turbines Model tests were conducted at DHI Denmark in the FloatStep project. Two cylinders with heave
must be able to quantify the effects of plates are connected by a beam with a flexible hinge (Hansen et al 2024).

floater flexibility. The implementation of
Borg et al (2016) in HAWC2 is here
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superposition can be utilized. Thus
following modest pre-computation,
stress time series for any random
realization can be achieved efficiently
through influence functions and FFT. A
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proof of concept is provided here.
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We select the TEA Wind 15 MW reference Stress as a linear response to waves, motion and sectional loads

wind turbine (Gaertner et al 2020) on

the UMaine semisub floater (Allen et al The stress field o in a linear-elastic structure satisfies
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results of global response calculation from e.g. SIMA. and mooring (bottom) for o, in front pontoon (FP1).
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Ongoing work: Check of residual loads to A good match is shown for o, in
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