De-risking Scour and Anchor Installation for Floating Offshore Wind through

Numerical and Experimental Modelling (SCALE)

Shauna Creane^{1*}, Christopher O'Donovan¹, Pegah Amjadan¹, Pat Naughton², Jimmy Murphy^{3 4},

Jennifer Keenahan^{1 5}, Mark Coughlan^{5 6}, Mike Long¹

¹ School of Civil Engineering, University College Dublin, Dublin, Ireland; *shauna.creane@ucd.ie ² School of Engineering & Design, Atlantic Technological University Sligo, Sligo, Ireland ³ School of Civil & Environmental Engineering, University College Cork, Cork, Ireland ⁴ SFI Research Centre for Energy, Climate and Marine (MaREI), University College Cork, Cork, Ireland ⁵ SFI Research Centre for Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland ⁶ School of Earth Sciences, University College Dublin, Dublin, Ireland

Technological University

Centrifuge

testing

Challenge

Under the Climate Action Plan, Ireland has ambitious targets for the development of offshore renewable energy. A common challenge in exploiting such resources is the variable geological structure and dynamics of the seabed. This variability creates a number of geotechnical challenges that can introduce significant risks to the siting and installation of engineering structures, such as foundations, anchors and cables. Identifying, understanding and predicting the nature and implications of these geotechnical challenges requires a firm understanding of the seabed through site surveying and monitoring, as well as laboratory testing. These techniques can be costly and time consuming. However, when combined with numerical and experimental modelling, they can form powerful tools and techniques to assess the seabed and so optimise engineering design.

The aim of the SCALE project is two-fold: (i) to enhance Ireland's experimental modelling capacity in understanding geotechnical and hydrodynamic challenges, and (ii) develop state-of-the-art numerical modelling approaches to assess and mitigate geotechnical and physical processes that impact engineering infrastructure in Irish offshore conditions.

Study Approach

Atlantic Marine Test Site (AMETS):

- Developed by Sustainable **Energy Authority of Ireland** (SEAI)
- Full-scale Floating Offshore Wind (FLOW) infrastructure testing in an open ocean environment
- Ideal site to understand and mitigate geotechnical challenges that will be widely experienced in the Irish offshore sector related to FLOW installation
- SCALE will use real-world data and conditions at the AMETS to achieve project aims and so further de-risk the site for future technology deployment.

1. Design decision-making tool for FLOW anchor system selection

Site Characterisation

- Environmental *Conditions/Loads*
- Geotechnical Conditions
- Seabed Conditions

Technology screening

- Technology review
- Past projects
- Market Research
- Stakeholder
- Engagement

2. Address Offshore Geotechnical Problems in FLOW Mooring Techniques

- **Optimise Key Techniques and Analytical Models during Anchor Installation**
- Elucidate Complex Kinematic Mechanism and Behavior of Anchors in the Seabed
- Assess Tension Transmitting and Profile Properties of Embedded Mooring/Installation Line
- Determine Ultimate and Long-Term Cyclic Pullout Capacities of the Anchor

Computational Fluid Finite Element Dynamics (CFD) Modelling (FEM)

CFD model of fluid flow around shipwreck on the seabed

Flume tank

testing

Experimental modelling of scour around offshore wind foundations [1]

Preliminary Site Characterisation Results

Environmental Conditions Assessment and Geotechnical Ground Model development of AMETS to support Technology screening and ultimately FEM, **CFD, Flume tank testing and Centrifuge testing**

Hourly wind speeds at 150 m above sea level (m/s) Hourly wind speeds at 150 m above sea level (m/s) 40 - 45 35 - 40 30 - 35 25 - 30 20 - 25 15 - 20 10 - 15 5 - 10 0 - 5 Hmax T_{ass} V_{hub} H_s T_{ass} V_{hub} (m) T_{ass} V_{hub} H_s T_{ass} V_{hub} (m) T_{ass} V_{hub} H_s T_{ass} V_{hub} (m) T_{ass} T_{ass} T_{ass} T_{ass} V_{hub} H_s T_{ass} T_{ass} T_{ass} V_{hub} H_s T_{ass}		Environmental Condition								
$\begin{array}{c} 40 - 45 \\ 35 - 40 \\ 30 - 35 \\ 25 - 30 \\ 20 - 25 \\ 15 - 20 \\ 10 - 15 \\ 5 - 10 \\ 0 - 5 \end{array} \\ \begin{array}{c} H_{max} \\ T_{p} \\ H_{max} \\ T_{ass} \\ V_{hub} \\ (t) \\ 10 - ts \\ 5 - 10 \\ 0 - 5 \end{array} \\ \begin{array}{c} T_{p} \\ H_{max} \\ T_{ass} \\ V_{hub} \\ (t) \\ 10 - ts \\ 5 - 10 \\ 0 - 5 \end{array} \\ \begin{array}{c} T_{p} \\ H_{max} \\ T_{ass} \\ V_{hub} \\ (t) \\ 10 - ts \\ 5 - 10 \\ 0 - 5 \end{array} \\ \begin{array}{c} T_{p} \\ H_{max} \\ T_{ass} \\ V_{hub} \\ (t) \\ 10 - ts \\ 5 - 10 \\ 0 - 5 \end{array} \\ \begin{array}{c} T_{p} \\ H_{max} \\ T_{ass} \\ V_{hub} \\ (t) \\ 10 - ts \\ 10 - ts \\ 10 - ts \\ T_{ass} \\ V_{hub} \\ (t) \\ 10 - ts \\ 10 - ts \\ 10 - ts \\ T_{ass} \\ V_{hub} \\ (t) \\ 10 - ts \\ 10 - ts$	NW	NNW	N	NNE	١Ę	Ho spee abo	ourl eds eve s (m	y wind at 150 m sea level n/s)	P 0 •	reli on E W
Wave SSW SSEWind dir (°)Freq. of Occ. (%)V hubH H s H mailT T mail H_s T_p H_{ubb} T_p H_{max} T_{ass} V_{hub} (r T_{b}) V_{hub} H_s T_{ass} V_{hub} (r T_{ass}) H_s T_p H_{s} T_p T_{s} 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 $ParanH_sT_pOcc.Occ.Occ.(%)V_{hub}H_sT(m/s)(m)(s)H_sT(m/s)(m)(s)$	W				ENE		4 3 3	0 - 45 5 - 40 0 - 35	•	W E
In the set of t	W				ESE		2 2 1	5 - 30 0 - 25 5 - 20	Pa	ram H _s (
Vhub (IVhub (I V_{hub} (I H_s/T_p Lumped scatter diagram H_s T_p WaveWindFreq. of(m)(s)dir (°)Occ. (%)1.510.0281.3326.30.2151.510.0281.3281.30.385	SW	SSW	s	S S S S S E	ЭЕ		1 5 0	0 - 15 - 10 - 5	H	T_p max T_{ass}
H_s T_p WaveWindFreq. of(m)(s)dir (°)dir (°)Occ. (%)1.510.0281.3326.30.2151.510.0281.3281.30.385	rmal Sea State Conditions H_s/T_p Lumped scatter diagram *10-m									
1.510.0281.3326.30.215225.5111.510.0281.3281.30.385245.811	<i>H_s</i> (m)	Т _р (s)	Wave dir (°)	Wind dir (°)	Freq. Occ. (9	of %)		V _{hub} (m/s)	<i>H</i> _s (m)	Т ₁ (s
1.5 10.0 281.3 281.3 0.385 24 5.8 11	1.5	10.0	281.3	326.3	0.215	5		22	5.5	11
$1 \in 0 \cap 0$	1.5	10.0	281.3	281.3	0.385	5		24	5.8	11

d) m vel	Preliminary analysis based on ERA5 hindcast data [2]				
	 Wind: - 10.25°, 54.25° Wayay 10.5° 54° 				
	• vvave10.5 , 54				
	Extreme Conditions				
	Parameter 50-year return value				

)	Parameter	50-year return value			
5	<i>H_s</i> (m)	15.5			
)	T_p (s)	15.5 < 20.0			
)	H_{max} (m)	28.9			
	T_{ass} (s)	14.0 < 18.0			
	<i>V_{hub}</i> (m/s) *	45			

V _{hub} (m/s)	<i>H</i> _s (m)	Т _р (s)	Wave dir (°)	Wind dir (°)	Freq. of Occ. (%)
22	5.5	11.0	247.5	213.8	0.051
24	5.8	11.5	247.5	202.5	0.054
26	7.0	12.0	236.3	202.5	0.015
28	10.1	14.5	258.8	258.8	0.006
					0.001

University College Cork, Ireland Coláiste na hOllscoile Corcaigh