Comparative Analysis of Weather Window
Estimations: Physics-based Versus Machine
Learning Wave Forecasting

=~ Met Office

University Ajit C. Pillai¢, lan G.C. Ashton?, Edward C.C. Steele®
OfEXGter a.plllailexeter.ac.uk

9Renewable Energy Group, Department of Engineering, University of Exeter, United Kingdom
b Met Office, FitzRoy Road, Exeter, United Kingdom

Background Objectives

» Activities at Offshore Renewable Energy sites are governed by Wave Data Source
strict weather limits

= More accurate, site-specific forecasts can provide improved — —
decision-making In-situ Observations Physics-based models

* Physics-based spectral wave models are traditionally used for Relatively reliable High-fidelity
wave forecasts, but incur significant computational cost Sparse data set High-computational cost

* Machine learning models can provide low-cost nowcasts and Objectives: Compare weather windows predicted by traditional numerical
forecasts weather prediction (NWP) forecasts against machine learning (ML) forecasts
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Weather Windows:
Numerical Weather Prediction (UKMO): = Computed at WaveHub using both ML Forecast & Traditional NWP Forecast
= 1980-2009 (training) * Benchmarked against validation buoy
" 1.9 km x 1.5 km resolution = H_, threshold of 1.5 m; minimum duration 4 hours
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Summary and Conclusions

Machine learning forecasts can be used to predict weather windows with similar accuracy to NWP forecasts
Machine learning weather windows less likely to be false alarms, however, machine learning more likely to miss valid windows

All results are downsampled to match NWP frequency; machine learning forecasts are lower cost and can therefore be
updated more frequently given available in-situ measurements

Future work will use ML to predict window rather than H_ ; as a proxy for the weather window
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