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Main findings

Methods from classical regression theory is promising for estimating
slowly varying nonlinear wave loads from model test data. It
allows for flexible parametrization of the wave force quadratic
transfer function (QTF) and provides tools for quantifying and
reducing statistical variability as well as for finding the optimal
bias-variability trade-off.

Background

• Slowly varying nonlinear wave forces and resulting motions are important for
mooring design of FOWTs

• Theoretical/numerical wave load models are not complete/accurate enough (po-
tential theory) or too slow (CFD)

• The industry still relies on model testing!

• Calibrating simulation models using model test data gives the best of both worlds

State of the art

• Identification of quadratic wave force transfer function
(QTF) from model test data using cross-bi-spectral
analysis of measured wave elevation and ”measured”
wave force

• ”measured”wave force is calculated from measured plat-
form motion and assumed 1DOF oscillator model of the
platform (assume mass, damping and stiffness, and im-
prove iteratively)

• Statistical variability of QTF estimate reduced by
”smoothing” in bi-frequency plane - by moving weighted
averaging

– Strong smoothing→ Low statistical variability, but
large bias due to low resolution

– Weak smoothing→ Small bias/high resolution, but
also higher statistical variability

Question: How to find the right bias-variability trade-off?

Statistical variability: Howmuch the QTF-estimate vary
from one random sea-state realization to the next

Objective

Investigate system-identification by multivariate regression
to estimate QTF, added mass and damping of FOWT from
model test data

Motivation

Classical regression theory gives us tools to,

• Quantify statistical variability → standard-error

• Reduce statistical variability → regularization

• Finding the optimal bias-variability trade-off by mini-
mizing cross-validation error (maximize ability to pre-
dict ”un-seen” data)

Allow for flexible QTF parametrization:

• QTF as a sum of 2D cubic B-splines with coefficients as
regressors

• Physics-based (semi-empirical) parametrization (Work
in progress)

System identification as a regression problem

Wave force residual in frequency domain:

FD(ω;x, ζ)︸ ︷︷ ︸
wave force

estimated from QTF

−

(−ω2M + iωB + C)︸ ︷︷ ︸
displacement-to-force
transfer function

η(ω)︸︷︷︸
measured

displacement


︸ ︷︷ ︸

”measured”wave force

= ϵ(ω)︸︷︷︸
Residual to
minimize

(in squared sense)

Estimated in linear regression:

• x: QTF design vector with O(100) number of regressors. Wave force is
quadratic in wave height, but linear in x.

Estimated by nonlinear regression (outer loop):

• M : Total platform mass, including (unknown) LF added mass

• B: Low-frequency (LF) damping

Measured in ocean basin:

• C: Mooring stiffness

• η: Platform displacement (its Fourier transform)

• ζ : Wave elevation (its Fourier transform)

Wave force residual at discrete frequencies

Rewrite as two equations per discrete frequency (real and imag) - over-determined
equation system:

Ax− b = E

Solved for x in least-square sense by minimizing ”wave force error”ETE:

x = (ATA)−1ATb

Nonlinear regression (outer loop) with ”hybrid objective”

• Optimal mass and damping parameter need to ”prioritize” frequencies around
resonance:

– M and B chosen such as to minimize displacement error instead of force
error

– Nonlinear regression with two regressors: M and B

• Each iterate (Mi, Bi) corresponds to ”measurements”bi

• ...and a QTF design vector xi = (ATA)−1ATbi

• xi must be chosen such as to minimize the wave force error to avoid excessive
statistical variability outside the resonance band in the QTF bi-frequency plane

Quadratic transfer function (QTF) and its
parametrization

From wave elevation and QTF to wave drift force

Wave drift force as a Fourier series,

fD (t) = ℜ
∑
q

FD
(
ωq

)
exp

(
iωqt

)
with Fourier coefficient for difference frequency ωq:

FD(ωq) =
∑

q=k−r

Q (ωr, ωk) ζ
∗ (ωr) ζ (ωk)

Here, summation is over all wave-frequency pairs < ωr, ωk > with
constant difference frequency, satisfying |ωk − ωr| = ωq.

Physical interpretation: Two wave components with frequencies
ωr and ωk have nonlinear interaction and produce a difference fre-
quency force at ωq = |ωk − ωr|.

Q (ωr, ωk): Quadratic transfer function (QTF) defined in a
bi-frequency plane of interacting frequencies

QTF as a sum of cubic B-spline products

Q (ωr, ωk) =

Nω∑
i=1

Nω∑
j=1

cijBi (ωr)Bj (ωk)

• Bi (ωr) and Bj (ωk): cubic B-splines (real valued)

• c = [cij]: Complex 2D representation of the real-values 1D QTF
design vector x.

Overlapping cubic B-splines

Regularization

Append penalty equations to ”wave force resid-
ual” equation system: Af

λ0A0
λ2A2

x−

 bf
λ0b0
0

 = E

λ0 controls closeness to reference solution (po-
tential theory)

• We ”prefer” solutions close to the reference
solution

• ... but λ0 should be small enough to only
effect bi-frequency regions with weak signal

• Practical interpretation: We fall back on
potential theory gradually as we loose sup-
port from data

λ2 controls smoothness

• We ”prefer”a QTF with low curvature (2nd
derivative)

Optimal regularization

Cross-validation error
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Optimal regularization parameters λ0 and λ2
found by minimizing cross-validation error

Non-regularized QTF-estimate from 3
hours of measurements

Slice through QTF surface at constant difference frequency:
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Regularized QTF-estimate from 3 hours of
measurements
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Regularized QTF-estimate from 6 × 3
hours of measurements
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Hs = 6.19m, Tp = 9s


