

EFFECT OF WIND TURBINE YAW MISALIGNMENT ON WAKE MEANDERING

Balram Panjwani, SINTEF Industry Lene Vien Eliassen and Marit Kvittem, SINTEF Ocean Leon Fevang-Gunn and Bendik Peter Løvøy Alvestad, NTNU

Deepwind Conference, Trondheim, 18-20 January, 2023

Outline

- Motivation and Introduction
- Methods and tools
- Dynamic wake meandering model (DIWA)
- Results and discussion
- Conclusions

Introduction and Motivation

- Empirical models for steady state wake calculation
 - Jiménez et al. [1] presented a preliminary a wake deflection model based on LES results
 - Bastankhah and Porté-Angel [2] developed an analytical model to predict the wake deflection using wind tunnel.
 - Qian and Ishihara [3] developed an Analytical Wake Model for based on RANS simulations
- Validity of these models for large scale wind turbines
- Can we use these yaw deflectiom models with meandering in dynamic wake meandrering program (DIWA)

Methods and tool

- RANS and LES for understanding the effect of yaw on wake deflection
- OpenFoam transient PisoFoam solver
- Actuator line model for the wind turbine
- RANS: K-epsilon turbulence model
- LES: Smagorinsky model
- Inflow conditions
 - Uambient = 8 m/s, TI = 10%
- Three yaw angles
 - 0, 10 and 20 degree

RANS CFD studies of NREL 5MW without and with yaw

Yaw = 20

SINTEF

Yaw = 0

NRE5MW: Verification of Yaw with CFD models

Yaw = 10 degree

Yaw = 20 degree

SINTEF

6

Velocity deficit

With yaw (10 degree)

SINTEF

Without yaw

12 MW: Verification of Yaw with CFD models

Yaw = 10 degree

Yaw = 20 degree

SINTEF

Velocity deficit (12 MW)

with yaw

without yaw

Transient inflow condition: Meandering study (Yaw effect)

CFD domain OpenFoam (Actuator line model for wind turbine)

Coupled results

Implementation with meandering (Static yaw)

- Wake position due to yaw
 - $Y_d = \theta * X_k$ (θ is wake deflection angle)
- Wake meandering positions
 - $Y_{k+1} = Y_k + v \Delta t + Y_d$
 - $Z_{k+1} = Z_k + w \Delta t$

Accounting of wake deflection in meandering velocity calculation

DIWA

- Wake model: Dynamic Wake Meandering modell
 - As recommended in the IEC standard (IEC 61400-1:2019)
- Aerodynamics: BEM with stiff blades.
- Wind turbine control: Cp-Ct curves as input, together with rotor speed and blade pitch angle and wind speed
- Turbulence boxes as input

CFD results with and without yaw

Various methods of Wake center estimation [ref:4]

- Gaussian based approaches
 - 1-D Gaussian
 - 1-D Gaussian (Ideal Sigma)
 - 1-D Gaussian (Bastankhah)
 - 2-D Gaussian
- "constant momentum deficit" : The momentum or energy flux through the enclosed region
- "Constant area": A wake may be identified by contours that have a *constant area*
- Maximum power
- Deficit weighted average method

Wake center position in Y direction (X/D = 8)

Red: Without yaw Black: With yaw

() SINTEF

Time (s)

Wake center position in Z direction (X/D = 8)

Time (s)

(NREL5MW: Yaw =10)

Un-accounting of wake deflection in meandering velocity calculation

SINTEF

Accounting of wake deflection in meandering velocity calculation

19

(NREL5MW: Yaw = 20)

meandering velocity calculation

Conclusions

• Jimenez model overpredicts the wake deflection

• For large wind turbines (>5MW) Bastankhah, Shapiro, and Qian model underpredicts the initial wake deflection compared with current RANS simulations

• Need for better wake center tracking method

• The yawed turbine only affects meandering in horizontal plane

 Preliminary studies showed that effect of wake deflection can be directly added to the wake center positions in horizontal plane

Acknowledgement

The work performed here is a part of ongoing IPN project ImproveFlow and FME Northwind. Financial support received from these projects is greatly appreciated.

References

- [1] Jiménez et al, Application of a LES technique to characterize the wake deflection of a wind turbine in yaw, Journal of Wind energy, 2010
- [2] Bastankhah and Porte-Agel, A wind-tunnel investigation of windturbine wakes in yawed conditions, Wake Conference 2015
- [3] Qial and Ishihara, A New Analytical Wake Model for Yawed Wind Turbines, Energies, 2018
- [4] Elon Quon, https://ewquon.github.io/waketracking/

Teknologi for et bedre samfunn