

 \bigcirc

Wake steering in dynamic wind farm simulations

Stochastic testing of a quasi-static reinforcementlearning approach

Valentin Chabaud, SINTEF Jie Yan, NCEPU Hangyu Wang, NCEPU Konstanze Kölle, SINTEF Spyridon Chapaloglou, SINTEF

Technology for a better society

- Wake steering controller
- Dynamic simulation platform
- Case study
- Preliminary results and outlook

Wake steering controller

- CONWIND: Collaboration project between Norway and China
- NCEPU Research group of Prof. Liu Yongqian, Assoc. Prof. Jie Yan, Phd student Hangyu Wang – among others.
- The algorithm is being tested in a real offshore wind farm
- Consists of two steps, both based on deep learning:
- 1. Prediction of wind speed and direction ahead of first row from LIDAR data
- 2. Determination of best yaw angle combination from quasi-static wake simulations depending on wind speed and direction

Minute/second-scale wind prediction and RL offshore wind farm control

Jie Yan

North China Electric Power University

Email: yanjie@ncepu.edu.cn

23 January 2023

Multi-task prediction of wind speed and direction

Figure12 Multi-task learning model framework

① Using multi-task learning based on parameter sharing to jointly predict wind speed and direction.

② Two tasks can provide additional information for each other, thereby improving both tasks.

③Using LSTM as basic learning unit.

④ The MTL model includes two modules, a shared layer for extracting shared parameters and a specific task layer for forecasting each subsequence.

Multi-task prediction of wind speed and direction

Based on the division of typical wind processes and multi-task learning model, the wind speed and direction of different types of wind processes are modeled and predicted respectively, with a time resolution of 1min and a time span of 15min.

Multi-task prediction of wind speed and direction

Figure14 The first and last step in wind direction forecasting

Offline training and online learning with DRL

Offline training and online learning with DRL

 2. Generalization towards "unknown" samples

Results (ws=8 m/s; wd=270°)

WS Variance	WD Variance	Average Optimization(SLSQP)	Sequence Optimization(SLSQP)	Sequence Optimization(TD3)
0-0.3	0-20	0.892%	2.649%	2.193%
0-0.3	20-60	-4.19%	1.471%	1.277%
0-0.3	60-140	-3.311%	1.104%	0.841%
0.3-0.6	0-20	-0.605%	2.854%	2.214%
0.3-0.6	20-60	-4.931%	1.945%	1.694%
0.3-0.6	60-140	-4.294%	0.724%	0.545%
0.6-1.2	0-20	0.584%	3.406%	2.082%
0.6-1.2	20-60	-2.563%	0.571%	0.264%
0.6-1.2	60-140	-1.557%	0.913%	0.756%
Other		-3.38%	0.79%	0.67%
Weighted Lift Rate		-1.43%	2.02%	1.67%

Research question

The wake steering algorithm is learned from quasi-static simulations

- time variations are represented through speed and direction variances
- no distinction between low- and high-frequency variations

 \rightarrow How is its performance affected by a more comprehensive representation of farm-wide turbulent fluctuations and wake dynamics, especially at low frequencies?

Dynamic simulation platform

- Medium fidelity!
- NREL's FAST.Farm
 - aero-servoelastic farm simulations
 - running OpenFAST for each turbine
 - solving for wake dynamics
- Ambient wind field input from TurbSim.Farm (courtesy NREL)
 - at turbines
 - in between for wake dynamics
- DTUWEC with yaw control
- Parallel computing -Multiple seeds

16

Mid-fidelity ambient flow modeling Limitations in synthetic turbulence generation

- Option 1: Point-based Gaussian process generation
 - Frozen-wake turbulence: longitudinal coherence mixed with temporal coherence = time shift, not appropriate for large farms
 - Curse of dimensionality
- Option 2: LES simulations of ambient wind
 - Overkill and inconvenient
- New option: Aggregated Gaussian process generation

17

Aggregated Gaussian process generation

- From Poul Sørensen et al., 2000s
- Based on spectral representation of turbulence
- Frequency-domain transfer functions obtained by spatial averaging of the coherence function
- Reduction of DOFs by $\sim 20^3$,
- Reduction of timestep by ~ 20
- Temporal coherence from phase delay due to advection: no frozen turbulence assumption

$$H^{2}(f) = 4 \frac{\int_{r_{0}}^{R} \int_{r_{0}}^{R} \int_{0}^{2\pi} \int_{0}^{2\pi} C(d, f) r_{1}r_{2}d\theta_{1}d\theta_{2}dr_{1}dr_{2}}{(R^{2} - r_{0}^{2})^{2}}$$

$$S_{agg}(f) = H^2(f) S_{point}(f)$$

- Farm-wide: microscale + mesoscale
 - Farm-level spectrum & coherence models
 - Correlated, aggregated (rotor-averaged) wind field
 - At each turbine
 - Between turbines for wake dynamics
 - No frozen turbulence assumption
- Constrained turbulence: reconstruction of correlated wind fields given prior knowledge without loss of information
 - Rest of the farm based on wind speed observation at some turbines
 - Full resolution wind field for specific turbine(s) based on aggregated field
- Multiple realizations
 - Stochastic (Monte Carlo) simulations

Aggregated ambient wind fields

Quasi-static turbulence based on first row (as in wake steering algorithm / FLORIS)

- 12 - 11 Ppnubbow - 9 Que Y Mon - 8 V Que Y Mon - 7 O - 6 - 49e+00

- 1.4e+01

Frozen turbulence (as in TurbSim)

Farm scale turbulence

Case study

- TotalControl reference wind power plant
 - 32 x DTU10MW turbines, staggered layout 5D spacing
- 10 m/s, 90 degrees (South)
 - Most unfavourable conditions (7 wake superpositions, 5D spacing)
- Standard turbulence model
 - IEC Kaimal, Class B
 - Farm-scale spectrum and coherence function from Vigueras-Rodriguez et al.
- 1h, 5 seeds
- Limitations: Rotor-averaged, rigid, 3 wake superpositions

Procedure

Test matrix (4 cases):

- With and without wake steering
- Quasi-static vs farmwide turbulence

Preliminary results

- Computational speed on 64-core workstation, all realizations in parallel
 - TurbSim.farm ~ 2 * realtime
 - FAST.Farm: ~ realtime
- Yaw angle varying in time as function of direction

Mean yaw angle [deg]

Technology for a better society

Preliminary results

- Yaw control decreases power production
 - Not only in the turbulent, but also in the quasi-static case

Preliminary results

- Yaw control decreases power production
 - Not only in the turbulent, but also in the quasi-static case
 - Power losses due to yaw misalignment are larger than gains by wake deflection
 - Meandering >> Deflection

Conclusions and outlook

- Fruitful collaboration development and testing of an advanced control algorithm
 - Deep learning can cope with the large number of variables in wake steering
 - Medium fidelity enables efficient testing for various load cases
- The efficiency of wake steering is fragile
 - Dependent on calibration of TurbSim.Farm/FAST.Farm and control tuning
 - Open-loop testing approach without online training for feedback correction is questionable
- Next steps
 - Closed-loop control embedding the controller in FAST.Farm instead of using a pre-calculated set of yaw angles
 - Calibration and tuning

Technology for a better society