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:
Dl =%’ Wake steering controller

CONWIND: Collaboration project between Norway and China

NCEPU — Research group of Prof. Liu Yonggian, Assoc. Prof. Jie Yan, Phd student

Hangyu Wang —among others.
The algorithm is being tested in a real offshore wind farm

Consists of two steps, both based on deep learning:

1. Prediction of wind speed and direction ahead of first row from LIDAR data

2. Determination of best yaw angle combination from quasi-static wake simulations

depending on wind speed and direction
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Multi-task prediction of wind speed and direction
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Figurel2 Multi-task learning model framework
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Multi-task prediction of wind speed and direction

€ Based on the division of typical wind processes and multi-task learning model, the wind speed and direction
of different types of wind processes are modeled and predicted respectively, with a time resolution of Tmin

wind speed (m/s)
o ® = ~ ~

~

wind speed(m/s)
o o = I~y e

~

and a time span of 15min.

the first point

true

prediction

0 25 50 75 100 125 150 175 200

— true
prediction

\
),/ W \\ v "\’\,,’\.A} My h "‘1’ \.‘.

‘ | ‘\ ’ *Ji"vj .
’\/ ! \’\' el WY' "\

the last point
0 25 50 75 100 125 150 175 200

time (1 min)

Figurel3 The first and last step in wind speed forecasting
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Table 3 Wind speed forecasting error statistics

sy Lt |t Lt

1 0.20 0.41
2 0.25 10 0.43
3 0.28 11 0.45
4 0.31 12 0.46
5 0.33 13 0.47
6 0.36 14 0.48
7 0.38 15 0.50
3 0.40
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Multi-task prediction of wind speed and direction
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Figurel4 The first and last step in wind direction forecasting
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Table 4 Wind direction forecasting error statistics
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Offline training and online learning with DRL

o Agents act in complex and uncertain environments to
1 Agent al
. maximize rewards
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Offline training and online learning with DRL
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Offline training and online learning with DRL

Results (ws=8 m/s: wd=270°)

WS WD Average Sequence Sequence
Variance Variance Optimization(SLSQP) Optimization(SLSQP) Optimization(TD3)
0-0.3 0-20 0.892% 2.649% 2.193%
0-0.3 20-60 -4.19% 1.471% 1.277%
0-0.3 60-140 -3.311% 1.104% 0.841%
0.3-0.6 0-20 -0.605% 2.854% 2.214%
0.3-0.6 20-60 -4.931% 1.945% 1.694%
0.3-0.6 60-140 -4.294% 0.724% 0.545%
0.6-1.2 0-20 0.584% 3.406% 2.082%
0.6-1.2 20-60 -2.563% 0.571% 0.264%
0.6-1.2 60-140 -1.557% 0.913% 0.756%

Other -3.38% 0.79% 0.67%
Weighted Lift Rate -1.43% 2.02% 1.67%

X & EEFAZSHRL) (Research Center on Wind Power Technologies)
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siner R Research question

The wake steering algorithm is learned from quasi-static simulations
— time variations are represented through speed and direction variances
- no distinction between low- and high-frequency variations

- How is its performance affected by a more comprehensive representation
of farm-wide turbulent fluctuations and wake dynamics, especially at low
frequencies?

Technology for a better society



sl Dynamic simulation platform
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Mid-fidelity ambient flow modeling

SINTEF Limitations in synthetic turbulence generation

* Option 1: Point-based Gaussian process
generation

— Frozen-wake turbulence: longitudinal coherence
mixed with temporal coherence = time shift, not
appropriate for large farms

— Curse of dimensionality

* Option 2: LES simulations of ambient wind

— OQverkill and inconvenient

* New option: Aggregated Gaussian process £ SR
generation OR




Aggregated Gaussian

Sl process generation

* From Poul Sgrensen et al., 2000s
* Based on spectral representation of turbulence

* Frequency-domain transfer functions obtained
by spatial averaging of the coherence function

 Reduction of DOFs by ~203,
* Reduction of timestep by ~20

* Temporal coherence from phase delay due to
advection: no frozen turbulence assumption
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e TurbSim.Farm

Farm-wide: microscale + mesoscale
— Farm-level spectrum & coherence models

— Correlated, aggregated (rotor-averaged) wind field
= At each turbine
= Between turbines for wake dynamics

— No frozen turbulence assumption

Constrained turbulence: reconstruction of
correlated wind fields given prior knowledge
without loss of information

— Rest of the farm based on wind speed observation
at some turbines

— Full resolution wind field for specific turbine(s)
based on aggregated field

Multiple realizations
— Stochastic (Monte Carlo) simulations

Turbine Farm

S[EC(f) —. » SH@’U,f@'tted(f) T

\\\\ x
0.1 2




SF Aggregated ambient wind fields

LowAmb Magnitude

Quasi-static turbulence
based on first row
(as in wake steering
- algorithm / FLORIS) Km O

2 4 6
S A N [

Frozen turbulence
(as in TurbSim)

Farm scale turbulence
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Case study

TotalControl reference wind power plant
— 32 x DTU10MW turbines, staggered layout 5D
spacing
¢ 10 m/s, 90 degrees (South)
=2» Most unfavourable conditions (7 wake
superpositions, 5D spacing)
* Standard turbulence model
— |EC Kaimal, Class B

— Farm-scale spectrum and coherence function from
Vigueras-Rodriguez et al.

°* 1h, 5seeds

* Limitations: Rotor-averaged, rigid, 3 wake
superpositions




SINTEF

Test matrix (4 cases):

* With and without
wake steering

* Quasi-static vs farm-
wide turbulence

Procedure

Simulating ambient wind at turbine points in TS.Farm

HH wind files at first row, 1 realization

l l

Direction and speed prediction Ambient wind in TS.farm given
Wake steering algorithm wind at first row of turbines
Timeseries of yaw angles
1 min timestep, [5 min update rate N realizations of turbulent wind
field, keeping|realization for
Turbine Controller (DTUWEC) first row unchanged

l

FAST.Farm

l

N realizations of farm simulations

Technology for a better society



Preliminary results

* Computational speed on 64-core workstation, all realizations in parallel
— TurbSim.farm ~ 2 * realtime
— FAST.Farm: ~ realtime

* Yaw angle varying in time as function of direction

Mean yaw angle [deg]
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SINTEF

* Yaw control decreases power
production

— Not only in the turbulent, but also in the
quasi-static case

— fully turbulent, no ctrl
— fully turbulent, yaw ctrl
— quasi-static, no ctrl
— quasi-static, yaw ctrl
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SINTEF

* Yaw control decreases power
production

— Not only in the turbulent, but also in the
quasi-static case

— Power losses due to yaw misalignment are
larger than gains by wake deflection

— Meandering >> Deflection

Lateral displacement of wake centerline [m]
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SINTEF Conclusions and outlook

* Fruitful collaboration —development and testing of an advanced control algorithm
— Deep learning can cope with the large number of variables in wake steering
— Medium fidelity enables efficient testing for various load cases

* The efficiency of wake steering is fragile
— Dependent on calibration of TurbSim.Farm/FAST.Farm and control tuning
— Open-loop testing approach without online training for feedback correction is questionable

* Next steps

— Closed-loop control embedding the controller in FAST.Farm instead of using a pre-calculated set of
yaw angles

— Calibration and tuning

Technology for a better society
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