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Wake steering controller

• CONWIND: Collaboration project between Norway and China

• NCEPU – Research group of Prof. Liu Yongqian, Assoc. Prof. Jie Yan, Phd student 
Hangyu Wang    ̶ among others.

• The algorithm is being tested in a real offshore wind farm

• Consists of two steps, both based on deep learning:

1. Prediction of wind speed and direction ahead of first row from LIDAR data

2. Determination of best yaw angle combination from quasi-static wake simulations 
depending on wind speed and direction

Technology for a better society
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①Using multi-task learning based on parameter

sharing to jointly predict wind speed and

direction.

②Two tasks can provide additional information

for each other, thereby improving both tasks.

③Using LSTM as basic learning unit.

④The MTL model includes two modules, a shared

layer for extracting shared parameters and a

specific task layer for forecasting each

subsequence.

Figure12  Multi-task learning model framework

Multi-task prediction of wind speed and direction
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◆ Based on the division of typical wind processes and multi-task learning model, the wind speed and direction

of different types of wind processes are modeled and predicted respectively, with a time resolution of 1min

and a time span of 15min.

Figure13 The first and last step in wind speed forecasting

Step RMSE(m/s) Step RMSE(m/s)

1 0.20 9 0.41

2 0.25 10 0.43

3 0.28 11 0.45

4 0.31 12 0.46

5 0.33 13 0.47

6 0.36 14 0.48

7 0.38 15 0.50

8 0.40

Table 3 Wind speed forecasting error statistics

Multi-task prediction of wind speed and direction
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Figure14 The first and last step in wind direction forecasting 

step RMSE(°) step RMSE(°)

1 5.36 9 7.41

2 5.86 10 7.69

3 6.23 11 7.83

4 6.49 12 7.92

5 6.77 13 7.91

6 6.94 14 8.03

7 7.01 15 8.22

8 7.19

Table 4 Wind direction forecasting error statistics

Multi-task prediction of wind speed and direction
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Offline training and online learning with DRL

Perception of Deep Learning
Decision-Making of Reinforcement Learning

Agents act in complex and uncertain environments to 
maximize rewards

Twin Delayed Deep Deterministic 
Policy Gradient

Sequential actions space-oriented 

Actor-Critic network structure
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Offline training and online learning with DRL

• 1. Offline training to obtain 

network to guide agent 

action

• 2. Generalization towards 

“unknown” samples

• 3. Involvement of real SCADA 

data as feedback into a 

Replay Buffer to modify and 

update the training network

FLORIS simulations

Compensation for 
wind fluctuations
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Results（ws=8 m/s; wd=270°）

Offline training and online learning with DRL

WS 

Variance 

WD

Variance 

Average

Optimization(SLSQP)

Sequence 

Optimization(SLSQP)

Sequence 

Optimization(TD3)

0-0.3 0-20 0.892% 2.649% 2.193%

0-0.3 20-60 -4.19% 1.471% 1.277%

0-0.3 60-140 -3.311% 1.104% 0.841%

0.3-0.6 0-20 -0.605% 2.854% 2.214%

0.3-0.6 20-60 -4.931% 1.945% 1.694%

0.3-0.6 60-140 -4.294% 0.724% 0.545%

0.6-1.2 0-20 0.584% 3.406% 2.082%

0.6-1.2 20-60 -2.563% 0.571% 0.264%

0.6-1.2 60-140 -1.557% 0.913% 0.756%

Other -3.38% 0.79% 0.67%

Weighted Lift Rate -1.43% 2.02% 1.67%



Research question

The wake steering algorithm is learned from quasi-static simulations
− time variations are represented through speed and direction variances

− no distinction between low- and high-frequency variations

→ How is its performance affected by a more comprehensive representation
of farm-wide turbulent fluctuations and wake dynamics, especially at low
frequencies?

Technology for a better society



Dynamic simulation platform

• Medium fidelity!

• NREL's FAST.Farm
‒ aero-servoelastic farm simulations 
‒ running OpenFAST for each 

turbine
‒ solving for wake dynamics

• Ambient wind field input from 
TurbSim.Farm (courtesy NREL)
‒ at turbines 
‒ in between for wake dynamics

• DTUWEC with yaw control

• Parallel computing -Multiple 
seeds

TurbSim.Farm

DTU Wind Energy 
Controller
(adapted)

X number of realizations (seeds)

Courtesy NREL



• Option 1: Point-based Gaussian process
generation
‒ Frozen-wake turbulence: longitudinal coherence

mixed with temporal coherence = time shift, not 
appropriate for large farms

‒ Curse of dimensionality

• Option 2: LES simulations of ambient wind
‒ Overkill and inconvenient

• New option: Aggregated Gaussian process
generation
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Mid-fidelity ambient flow modeling
Limitations in synthetic turbulence generation
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• From Poul Sørensen et al., 2000s

• Based on spectral representation of turbulence

• Frequency-domain transfer functions obtained
by spatial averaging of the coherence function

• Reduction of DOFs by ~203, 

• Reduction of timestep by ~20

• Temporal coherence from phase delay due to 
advection: no frozen turbulence assumption
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TurbSim.Farm

• Farm-wide: microscale + mesoscale
‒ Farm-level spectrum & coherence models
‒ Correlated, aggregated (rotor-averaged) wind field
▪ At each turbine

▪ Between turbines for wake dynamics

‒ No frozen turbulence assumption

• Constrained turbulence: reconstruction of
correlated wind fields given prior knowledge
without loss of information
‒ Rest of the farm based on wind speed observation

at some turbines
‒ Full resolution wind field for specific turbine(s) 

based on aggregated field

• Multiple realizations
‒ Stochastic (Monte Carlo) simulations

10 min 3 h

Turbine Farm



Aggregated ambient wind fields

20

Frozen turbulence
(as in TurbSim)

Farm scale turbulence
Quasi-static turbulence

based on first row
(as in wake steering
algorithm / FLORIS)



Case study

• TotalControl reference wind power plant
‒ 32 x DTU10MW turbines, staggered layout 5D 

spacing 

• 10 m/s, 90 degrees (South)
➔Most unfavourable conditions (7 wake 

superpositions, 5D spacing)

• Standard turbulence model
‒ IEC Kaimal, Class B
‒ Farm-scale spectrum and coherence function from 

Vigueras-Rodriguez et al.

• 1h, 5 seeds

• Limitations: Rotor-averaged, rigid, 3 wake 
superpositions



Procedure

Technology for a better society

Simulating ambient wind at turbine points in TS.Farm

Direction and speed prediction
Wake steering algorithm

Ambient wind in TS.farm given
wind at first row of turbines

HH wind files at first row, 1 realization

Turbine Controller (DTUWEC)

FAST.Farm

N realizations of turbulent wind
field, keeping realization for 

first row unchanged

N realizations of farm simulations

Timeseries of yaw angles 
1 min timestep, 5 min update rate

Test matrix (4 cases):

• With and without 
wake steering

• Quasi-static vs farm-
wide turbulence



Preliminary results

• Computational speed on 64-core workstation, all realizations in parallel
‒ TurbSim.farm ~ 2 * realtime

‒ FAST.Farm: ~ realtime

• Yaw angle varying in time as function of direction

Technology for a better society

Turbine number :           Upstream → Downstream
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Preliminary results
• Yaw control decreases power 

production 
‒ Not only in the turbulent, but also in the 

quasi-static case 



Preliminary results
• Yaw control decreases power 

production 
‒ Not only in the turbulent, but also in the 

quasi-static case 

‒ Power losses due to yaw misalignment are 
larger than gains by wake deflection

‒ Meandering >> Deflection Average over 
realizations



Conclusions and outlook

• Fruitful collaboration   ̶ development and testing of an advanced control algorithm
‒ Deep learning can cope with the large number of variables in wake steering 

‒ Medium fidelity enables efficient testing for various load cases

• The efficiency of wake steering is fragile
‒ Dependent on calibration of TurbSim.Farm/FAST.Farm and control tuning

‒ Open-loop testing approach without online training for feedback correction is questionable

• Next steps
‒ Closed-loop control embedding the controller in FAST.Farm instead of using a pre-calculated set of 

yaw angles

‒ Calibration and tuning

Technology for a better society
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