QUANTIFYING THE EFFECT OF ROCK ARMOUR SCOUR PROTECTION ON EIGENFREQUENCIES OF A MONOPILE SUPPORTED OHVS

Winkler K., Weil M., Sastre Jurado C., Stuyts B., Weijtjens W., Devriendt C.

Vrije Universiteit Brussel, OWI-lab

Contact: kristof.winkler@vub.be

QUANTIFYING THE EFFECT OF ROCK ARMOUR SCOUR PROTECTION ON EIGENFREQUENCIES OF A MONOPILE SUPPORTED OHVS

INTRODUCTION

Scour protection increases stiffness of its structure which leads to increase in natural eigenfrequency

INTRODUCTION

- Discrepancy between design and the build OWT-structures
 - Natural eigenfrequencies
 - Bending moments
 - Fatigue
- Affects overall cost and lifetime calculations
- Scour Protection needed to explain discrepancy
- Other sources confirm (e.g. Kallehave paper 2015)

- Mobile DV box
 - Accelerometer
 - Every 10 minutes
- Natural frequencies
 - Fore-aft (FA) 1st and 2nd mode
 - Side-side (SS) 1st and 2nd mode
 - 1 torsional (OHVS only)
- Variability in Tidal level
 - Tidal level correction (0.5mLAT)

QUANTIFYING THE EFFECT OF ROCK ARMOUR SCOUR PROTECTION ON EIGENFREQUENCIES OF A MONOPILE SUPPORTED OHVS

- 10 minutes of data represented with the power spectral density (PSD) method.
- Peaks correlate with:
 - 1st eigenfrequency
 - Torsional mode
 - 2nd eigenfrequency

- Operational modal analysis (OMA) calculated with the least square complex frequency (LSCF) method
- Modes are tracked in an unsupervised manner
- Pre-installation 2nd FA frequencies could not be tracked

- Shift from filter layer (green) to full armour SP (blue)
- Just after installation of armour, an increase of eigenfrequencies (1-3days)
- Long term (3 months), still an increase from initial, but lower
- Variation on measurements is due to environmental conditions

- Distribution of measurements
- Distribution after normalization for:
 - Temperature
 - Seawaterlevel
 - Waveheight
- Shift in mean value

- Linear regression model to predict eigenfrequencies trained with blue data (long term, after full SP installation)
- based on parameters:
 - Sea water temperature
 - Wave height
 - Tidal level
- It predicts the shape of the preinstallation frequencies, but with offset

Q

- Measurements compared to the design values
- Design underestimates the actual frequencies by upwards of 16%

FIRST CONCLUSIONS

- 1. Natural Eigenfrequencies of monopile supported structures increase due to scour protection installation.
- 2. Measured eigenfrequencies are higher than the Design values.

MODEL

- Integrated 1D FE model for OWT's
 - Assumptions & detailed info designer
 - Individual, Farm wide or multiple farms
 - owi_meta_data_base
- Verification
 - Frequencies from designer
- Improved geotechnics
 - Stiffer soil
 - PISA method
- OHVS specific:
 - Top mass on transition piece
 - Specific added masses

Timoshenko beam elements
Lumped mass formulation
Flanges, secondary steel, grout, TMD, ...

Assets shown: 10 v

Added mass Marine growth

P-y springs + PISA curves Local scour

QUANTIFYING THE EFFECT OF ROCK ARMOUR SCOUR PROTECTION ON EIGENFREQUENCIES OF A MONOPILE SUPPORTED OHVS

20 30 40 OWT nr

12

20 OWT nr.

MODEL

- integrated 1D FE model compared to design and measured eigenfrequencies
 - Better than design
 - Can't bridge the gap completely

THIRD CONCLUSION

- 1. Natural Eigenfrequencies of monopile supported structures increase due to scour protection installation.
- 2. Measured eigenfrequencies are a lot higher than the Design values.
- 3. Models without Scour protection can't explain the measurements.

MODEL

- Introducing 2 possible methods to model scour protection
 - Global accretion layer => extra soil layer with its own stiffness
 - Physics based model => overburden pressure that increases stiffness of the soil layers (Gmax)

MODEL: GLOBAL ACCRETION MODEL

- Can bridge the gap
- No reference values for stiffness of a rock/pebble layer
- Cannot fit 1SS and 2SS at the same time

Armour layer Global accretion layer Cushion layer m-t spring -///// p-y spring Filter layer m-t spring ¬////- p-y spring Soil layer 1 Soil layer 2 Soil layer 3 m-t spring _____ p-y spring m-t spring ______ p-y spring Soil layer 4 Final soil layer Mb spring ______ Hb spring

Monopile

QUANTIFYING THE EFFECT OF ROCK ARMOUR SCOUR PROTECTION ON EIGENFREQUENCIES OF A MONOPILE SUPPORTED OHVS

17/1/2023

16

Global accretion model: Gmax-Thickness parametrization

MODEL: PHYSICS BASED MODEL

- Cannot bridge the gap
- There are references for weight and geometry of scour protection (e.g. design)
- Cannot explain the full effect, but has merit is a part of it
- Diminishing returns for increased thickness and weight => Filter layer will have the biggest effect

-t spring -VW- p-y spring

-t spring -VW- p-y spring

m-t spring _____ p-y spring

m-t spring _____ p-y spring

m-t spring -////- p-y sprint

Monopile

Armour layer

Cushion layer

Soil layer 1

Soil layer 2 Soil layer 3

Soil layer 4

Final soil layer

Physics based model: Weight-Thickness parametrization

QUANTIFYING THE EFFECT OF ROCK ARMOUR SCOUR PROTECTION ON EIGENFREQUENCIES OF A MONOPILE SUPPORTED OHVS

17/1/2023

FINAL CONCLUSIONS

- 1. Natural Eigenfrequencies of monopile supported structures increase due to scour protection installation.
- 2. Measured eigenfrequencies are a lot higher than the Design values.
- 3. Models without Scour protection can't explain the measurements.
- 4. Global accretion layer model: can bridge the gap but no way to validate due lack reference values pebble/rock layer.
- 5. Physics based model: cannot bridge the gap but is credible due to easily understandable phenomenon.

Eigenfrequency increase after full armour installation

FUTURE RESEARCH

- Verify results at different locations
- Improve models for scour protection (combination or something new)

QUESTIONS?

QUANTIFYING THE EFFECT OF ROCK ARMOUR SCOUR PROTECTION ON EIGENFREQUENCIES OF A MONOPILE SUPPORTED OHVS

17/1/2023

