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FIGURE 3.9
Norway capacity additions becoming operational

SINTEF by power station type
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DNV Energy transition Norway 2022 — Commissioned by Norsk Industri

2x"Trollwind" / year!
Positioning system for FWT has to be "optimal" (criteria yet to be defined) and standardized



il Shared mooring (shared anchors and lines)
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Bl \\hy are such "lattices" interesting?
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Check also Honeymooring™ concept by Semar AS
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sl Challenges related to lattices

"Connolly lattice"

Mass and added mass: INO Windmoor 12MW
— Plenty! Resilience to line breakage, installation, Lengih/siiness of share Iness 1560 m 6o .
maintenance, wind loading/coherence, design optimization, Staticloading slong the Rorizontal s (nonfinear static analys
standards (load cases?, consequence classes?), ... 240 ——
— Focus today: dynamic response to wave loads 220 |- ot s sy 1 104 o .
= f#eigenmodes increases with the size of the lattice il
o Associated eigenfrequencies are spread in the LF range 2 = 180: : .
= Resonances might occur so: § :jz I §
o Nonlinear (LF) wave loads need to be predicted correctly g 0l o
o LF damping also must be quantified. Yool Vo
80 - ' . ! :
N . ;o :
40
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wilill Modal analysis

A[T} —~_ CT —~— K“}G — F Dynamic equilibrium of the lattice

(—Mw* + K)r =0

(I) — [(}l)l o sees Q‘)n] < Eigenvectors Free vibrations and eigenmodes
2

) < Eigenvalues
g}

A = diag(w?, ...,w



NB:

SINTEF

Eigenmodes (linear static analysis)
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degenerate modes (same eigenfrequency for different modeshapes)
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Eigenmodes (nonlinear static analysis)
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wilill Modal analysis

A[T} —~_ CT —~— K“}G — F Dynamic equilibrium of the lattice

(—Mw* + K)r =0

(I) — [(}l)l o sees Q‘)n] < Eigenvectors Free vibrations and eigenmodes
2

) < Eigenvalues
g}

A = diag(w?, ...,w

E (I) *L_ : C (L_ . ) i (1)5 AE — /J) Modal version of the dyn. equilibrium
where A[ — LL*




sl Assumption: Rayleigh damping

Modal — P
* Let us assume that C' =y M+yK odal response ¢ r
* NB: absolutely no indication that this assumption is fulfilled Modal IoadJ
* Uncoupled system of linear oscillators: p=o*L7'F

Vi€ {1,...,n} & + (m1 + 7w

-f L,... i
Vi€ {l,...n},¢§ w? — 2 +19iQ(y + ')/2%2)
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sl What drives the modal response of a lattice
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sl Modal second-order wave load of e

2" order load at a frequency Aw on one floater located at x

S iy = (GE ) (e ) Q (i, B) B

Use dispersion relation for deep water
2 2

wr —w?
2 J

falDw,x)= > GGeT T TQy (wiwj B)

wi—w;|=Aw
| i

Nodal loads (example, for a 3 cells x 2 dofs system)
F(Aw) = [fi(Aw,21), fo(Aw, 21), fi(Aw,29), fo(Aw, 29), fi(Aw, 23), fo(Aw, 23)] 12
Modal load for mode @ Modal response for mode @ as
=L F . fii

i

T W2 — Q2+ Q1 + wd)
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Example of modal excitation and response

JONSWAP, Hs=7m, Tp=10s, wave propagation direction: 30deg
SINTEF

Modal excitation Modal response

2x2 lattice
(8 modes)

Power spectrum |p(Aw)|
Power spectrum |{(Aw)|

3x3 lattice
(18 modes)

Power spectrum |p(Aw)|
Power spectrum |£(Aw)|
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sl Conclusion

* Nonlinear wave loads will excite lattices of FWT near resonance
* Modelling approach:

— Non-linear static analysis

— Modal analysis

— Classical second-order hydrodynamics

— Extend the concept of QTF to modal QTFs for the lattice

* |mportant
— Phase of the excitation is important (between dofs also)
— Resonance frequencies cover a large frequency range, including relatively "high" frequencies (>10mHz)
— So steer away from Newman approximation!!

* Further work (regarding wave loads)

— Next: Line damping model
— Ultimate goal: compute Qol's (e.g. line tension) and obtain their statistical properties from modal response

* For lattices: work needed on many more fronts (design optimization, standards/RP, among other)
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