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Background
Traditional analysis

* One-way coupled drivetrain model
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A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains, Wang et al., 2021
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Background
Traditional analysis

* One-way coupled drivetrain model
* Drivetrain nat. frequencies > 2 Hz
« 10 MW DTU RWT - 12P =1.92 Hz
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Stepl: global response analysis load effect analysis

A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains, Wang et al., 2021
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Background
Drivetrain in global analysis

."Ilr 3 \\".

1 DOF: Torsion
« Equivalent stiffness and

damping | | N\
| || I| k teq . 1‘\
n | H| '|

, ‘ | WY Ll
I k trTl ]{ft q ‘ ‘ = I\ /| |
te — | — I|
Tk + n?kyq I Creq N
' | |
lh.l I,"Il I;'Il n 2 J, generator

J'r'oto'r'

O] NTNU Norwegian University of Science and Technology V\/‘I{IT[I;H



Motivation

Objective

Medium-fidelity model of the drivetrain in global wind
turbine analysis
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Motivation

Objective

Medium-fidelity model of the drivetrain in global wind
turbine analysis

Why?
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Motivation
Structural flexibility of drivetrain
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Motivation
Structural flexibility of drivetrain

Larger turbines
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A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains, Wang et al., 2021
Drivetrains on floating offshore wind turbines: lessons learned over the last 10 years, Nejad et al., 2021,
Main bearings in large offshore wind turbines: development trends, design and analysis requirements, Torsvik et al., 2018
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Motivation
Structural flexibility of drivetrain

« Case study:
— Medium-speed drivetrain
— Flexible shaft
— Flexible bedplate

Four-point support Gearbox

Generator

Hub Main shaft Coupling Bedplate

A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains, Wang et al., 2021
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Motivation
Structural flexibility of drivetrain

« Case study:
— Medium-speed drivetrain
— Flexible shaft
— Flexible bedplate

B Coupled model
(T ———

T |

Model (1.528Hz) Mode2 (1.532 Hz) Mode3 (1.884 Hz)

Fig. 7. The first three eigenmodes of the 10-MW fully coupled rotor-drivetrain-bedplate-tower model.

A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains, Wang et al., 2021
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Motivation

Structural flexibility of drivetrain

« Case study:
— Medium-speed drivetrain
— Flexible shaft
— Flexible bedplate

— Coupled model

Model (1.528Hz) Mode2 (1.532 Hz)

Non-torsional
natural
frequencies
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natural
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Mode3 (1.884 Hz)

Fig. 7. The first three eigenmodes of the 10-MW fully coupled rotor-drivetrain-bedplate-tower model.

A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains, Wang et al., 2021
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Motivation
Structural flexibility of drivetrain

Traditionally hub/rotor mass and inertia included either in:

* The local model
— Neglect flexibility of the blades
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Motivation
Structural flexibility of drivetrain

Traditionally hub/rotor mass and inertia included either in:

* The local model
— Neglect flexibility of the blades

* Or the global model
— Wrong eigenfrequencies of the drivetrain model
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Motivation
Computational efficiency

Benefits of medium-fidelity
drivetrain in global analysis:

 Reduced computational
expenses

* Drivetrain response to global
factors:
— Farm level effects
— Farm level control
— Wind fields

15
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Motivation
Main bearings

« Transfer non-torque loads to bedplate and tower
 Difficult to replace

« High failure rate

Main bearing dynamics in three-point suspension drivetrains for wind turbines, Sethuraman et al. 2015

A review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection, Hart et al. 2019
Wind turbine drivetrain reliability collaborative workshop, Keller et al. 2016
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Motivation
Main bearing fatigue

Sensitive to
 Mean wind speed

4

Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain, Wang et al., 2022,
Impacts of wind field characteristics and non-steady deterministic wind events on time varying main-bearing loads, Hart et al., 2022,
Drivetrains on floating offshore wind turbines: lessons learned over the last 10 years, Nejad et al., 2021,
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Motivation
Main bearing fatigue

Sensitive to
 Mean wind speed
 Wind shear

4

Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain, Wang et al., 2022,
Impacts of wind field characteristics and non-steady deterministic wind events on time varying main-bearing loads, Hart et al., 2022,
Drivetrains on floating offshore wind turbines: lessons learned over the last 10 years, Nejad et al., 2021,
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Motivation
Main bearing fatigue

Sensitive to
 Mean wind speed
* Wind shear

« Turbulence

WV

Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain, Wang et al., 2022,
Impacts of wind field characteristics and non-steady deterministic wind events on time varying main-bearing loads, Hart et al., 2022,
Drivetrains on floating offshore wind turbines: lessons learned over the last 10 years, Nejad et al., 2021,
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Motivation
Main bearing fatigue

Sensitive to
 Mean wind speed
* Wind shear

« Turbulence

« Tower top yaw and pitch
moments

WV

Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain, Wang et al., 2022,
Impacts of wind field characteristics and non-steady deterministic wind events on time varying main-bearing loads, Hart et al., 2022,
Drivetrains on floating offshore wind turbines: lessons learned over the last 10 years, Nejad et al., 2021,
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Motivation
Main bearing fatigue

Sensitive to
 Mean wind speed
* Wind shear

« Turbulence

« Tower top yaw and pitch
moments

Influenced by atmospheric
conditions, wind field models and
wake effects

Wake meandering effects on floating wind turbines, Wise & Bachnyski, 2020

Response sensitivity of a semisubmersible floating offshore wind turbine to different wind spectral models, Putri et al., 2020,

Effects of atmospheric stability on the structural response of a 12 MW semisubmersible floating wind turbine, Rivera-Arreba, 2022,
Sensitivity of the dynamic response of a multimegawatt floating wind turbine to the choice of turbulence model, Nybg, 2022 N
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Methodology
OpenFAST

 NREL's wind turbine
engineering tool for global analysis

 Open-source
« Modular framework
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Methodology
OpenFAST

Add components to OpenFAST:
* Flexible shaft
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Methodology
OpenFAST

Add components to OpenFAST:
* Flexible shaft, bedplate
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Methodology
OpenFAST

Add components to OpenFAST:
* Flexible shaft, bedplate and main bearings
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Methodology
OpenFAST

Add components to OpenFAST:
* Flexible shaft, bedplate and main bearings

Target:
* Reliable main bearing loads from global analysis
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Methodology
ElastoDyn module ~f =~

 Current method

« Multi-body + modal
representation

— Modal: |
* Tower s —
» Blades —_—

— Multi-body:
* Platform
* Nacelle
 Drivetrain
* Hub FAST User quide, 2005
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Methodology
SubDyn module

* Linear frame FE model
— Beam elements
— Rigid links
— Cantilever, pin, universal and
ball joints

«Tower top

o~ Interface

« Craig-Bampton dynamic
system reduction

* Floating reference frame
« Substructure modelling
° Sma” angle assumptlon Modeling the TetraSpar Floating OffshoreWind Turbine Foundation as a

Flexible Structure in OrcaFlex and OpenFAST, Thomsen et al., 2021
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Methodology
Base case

« DTU 10 MW RWT
* Medium-speed drivetrain
 Land-based turbine

Four-point support Gearbox

Generator

Hub Main shaft Coupling Bedplate

On design, modelling, and analysis of a 10-MWmedium-speed drivetrain for offshore wind turbines, Wang, 2019
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Methodology
Simplified model

Shaft loads
(aero + inertia)l

GEN

16—, 8
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Methodology

Implementation in OpenFAST

ElastoDyn
Rotating

Generator inertia

« ElastoDyn
— Shaft (rotating)
— Hub
— Blades

@ NTNU Norwegian University of Science and Technology

31



Methodology
Implementation in OpenFAST

° SUbDyn SubDyn
Non-rotating
— Tower
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Methodology

Implementation in OpenFAST
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Preliminary results

Tower static loads

« Comparing traditional model (ED) and new model (SD+ED)
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Preliminary results

Tower static moments
« Comparing traditional model (ED) and new model (SD+ED)
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« ElastoDyn accounts for geometric nonlinearities
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ElastoDyn SubDyn
Rotating Non-rotating

Preliminary results

Shaft static loads E
* New model only (SD+ED)
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Preliminary results

Shaft static loads
 New model only (SD+ED)
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Preliminary results

Shaft static loads
 New model only (SD+ED)
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Preliminary results

Tower loads — turbulent wind
« Comparing traditional model (ED) and new model (SD+ED)
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« Work Iin progress
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Future work

« Verification against SIMPACK coupled model
— Campbell-diagram/eigenvalue analysis

— Time series simulation
e Shalft deflection
» Shaft and bearing loads

Jakob Gebel
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Future work

 Verification against SIMPACK coupled model
— Campbell-diagram/eigenvalue analysis

— Time series simulation
e Shalft deflection
» Shaft and bearing loads

« Bearing fatigue D Z li

1
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Future work

 Verification against SIMPACK coupled model
— Campbell-diagram/eigenvalue analysis
— Time series simulation Gen

e Shalft deflection o

» Shaft and bearing loads f

Gen
Stator

« Bearing fatigue EM"”’S”‘W
- E flange
* Implementation of IEA 15 MW é/g Bedplate
direct drive with Umaine floating " g2 ¢

platform
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Gaertner et al. 2020
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Future work

Verification against SIMPACK coupled model
— Campbell-diagram/eigenvalue analysis

— Time series simulation
e Shalft deflection
» Shaft and bearing loads

Bearing fatigue

Implementation of IEA 15 MW
direct drive with Umaine floating
platform

Drivetrain sensitivity to
— wind field models
— wake effects
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