

Design Optimization of Floating Offshore Wind Turbine Substructures using Frequency Domain Dynamic Model and Genetic Algorithm

EERA DeepWind conference, 19th January 2023.

<u>Victor Benifla¹</u>, Frank Adam^{1,2}

Victor.benifla@uni-rostock.de

¹Lehrstuhl für Windenergietechnik, Universität Rostock, Germany.

²Großmann Ingenieur Consult GmbH, Dresden, Germany.

High potential Worldwide, particularly in Europe

□ High potential Worldwide, particularly in Europe

Higher wind loads and extreme sea state

□ High potential Worldwide, particularly in Europe

□ Higher wind loads and extreme sea state

Different type of substructures

□ High potential Worldwide, particularly in Europe

□ Higher wind loads and extreme sea state

Different type of substructures

Complex manufacturing and low production rate

□ High potential Worldwide, particularly in Europe

□ Higher wind loads and extreme sea state

Different type of substructures

Complex manufacturing and low production rate

High Levelized Cost of Energy

 ${}^{34^\circ N}_{25^\circ W}$

 $3^{\circ}W$

 $8^{\circ}E$

 $29^{\circ}E$

 $-14^{\circ}W$

[1]

Steel and concrete Tension Leg Platform

Steel and concrete Tension Leg Platform

Simple manufacturing and installation process

- 4 buoyancy bodies
- diagonal, vertical and horizontal pipes

□ Steel and concrete Tension Leg Platform

Simple manufacturing and installation process

- 4 buoyancy bodies
- diagonal, vertical and horizontal pipes

□ Numerical and experimental analysis

[2]

□ Steel and concrete Tension Leg Platform

Simple manufacturing and installation process

- 4 buoyancy bodies
- diagonal, vertical and horizontal pipes

□Numerical and experimental analysis

Optimization framework for the design of the Universal Buoyancy Body (UBB)

[2]

□Numerical model: frequency domain dynamic model

Numerical model

□Numerical model: frequency domain dynamic model

Optimizer: genetic algorithm

□Numerical model: frequency domain dynamic model

Optimizer: genetic algorithm

Design parameterization: geometrical

□Numerical model: frequency domain dynamic model

Optimizer: genetic algorithm

Design parameterization: geometrical

Objective: minimize the substructure's mass/cost

Numerical model: frequency domain dynamic model

Optimizer: genetic algorithm

Design parameterization: geometrical

Objective: minimize the substructure's mass/cost

Constraints: system's dynamic response

Numerical model

Numerical model

Response Amplitude for Floating Turbine (RAFT)

Open-source frequency domain code for FOWT

Numerical model

- Open-source frequency domain code for FOWT
- Verified against time domain OpenFAST simulations

Numerical model

- Open-source frequency domain code for FOWT
- Verified against time domain OpenFAST simulations
- Aerodynamics: steady-state Blade-Element-Momentum theory

Numerical model

- Open-source frequency domain code for FOWT
- Verified against time domain OpenFAST simulations
- Aerodynamics: steady-state Blade-Element-Momentum theory
- Hydrodynamics: strip-theory for all submerged members

Numerical model

- Open-source frequency domain code for FOWT
- Verified against time domain OpenFAST simulations
- Aerodynamics: steady-state Blade-Element-Momentum theory
- Hydrodynamics: strip-theory for all submerged members
- Moorings: quasi-static model

GICON-TLP with IEA 15-MW wind turbine

mass and hydrostatic properties

- mass and hydrostatic properties
- Inear hydrodynamic coefficients and mean aerodynamic load

- mass and hydrostatic properties
- Inear hydrodynamic coefficients and mean aerodynamic load
- solve mean offset position $\mathbf{C}_{struc} \, \bar{\boldsymbol{\xi}} = \bar{\mathbf{f}}_{aero} + \bar{\mathbf{f}}_{hydro} + \bar{\mathbf{f}}_{moor}(\bar{\boldsymbol{\xi}})^{[4]}$

- mass and hydrostatic properties
- Inear hydrodynamic coefficients and mean aerodynamic load
- solve mean offset position $\mathbf{C}_{struc} \, \bar{\boldsymbol{\xi}} = \bar{\mathbf{f}}_{aero} + \bar{\mathbf{f}}_{hydro} + \bar{\mathbf{f}}_{moor}(\bar{\boldsymbol{\xi}})^{[4]}$
- compute linearized viscous drag excitation and damping

GICON-TLP with IEA 15-MW wind turbine

- mass and hydrostatic properties
- Inear hydrodynamic coefficients and mean aerodynamic load
- solve mean offset position $\mathbf{C}_{struc} \, \bar{\boldsymbol{\xi}} = \bar{\mathbf{f}}_{aero} + \bar{\mathbf{f}}_{hydro} + \bar{\mathbf{f}}_{moor}(\bar{\boldsymbol{\xi}})^{[4]}$
- compute linearized viscous drag excitation and damping
- solve system's dynamic response until convergence

 $(-\omega^{2}[\mathbf{M}_{struc} + \mathbf{A}_{sub}(\omega) + \mathbf{A}_{aero}(\omega)] + i\omega[\mathbf{B}_{sub}(\omega) + \mathbf{B}_{aero}(\omega)] + \mathbf{C}_{struc} + \mathbf{C}_{moor})\hat{\boldsymbol{\xi}}(\omega) = \hat{\mathbf{f}}(\omega)^{\mathbf{H}}$

- mass and hydrostatic properties
- Inear hydrodynamic coefficients and mean aerodynamic load
- solve mean offset position $\mathbf{C}_{struc} \, \bar{\boldsymbol{\xi}} = \bar{\mathbf{f}}_{aero} + \bar{\mathbf{f}}_{hydro} + \bar{\mathbf{f}}_{moor}(\bar{\boldsymbol{\xi}})^{[4]}$
- compute linearized viscous drag excitation and damping
- solve system's dynamic response until convergence
- get system's mean offset and extreme values from standard deviations (RMS) of the response spectra.

Design parameterization

MSL

Design parameterization upper node diagonal pipe [5] □IEA 15MW wind turbine: • $D_{rot} \sim 240 \ m, RNA_{mass} \sim 1000 \ t$ vertical pipe • $H_{hub} \sim 150 \text{ m}, L_{tower} \sim 120 \text{ m}$ -----...... horizontal pipe This project has received funding from the European Union's Horizon 2020 research and innovation programme under morring line the Marie Skłodowska-Curie grant agreement N° 860879. EHRSTUHL WINDENERGIETECHNIK

Design parameterization

□IEA 15MW wind turbine:

- $D_{rot} \sim 240 m$, $RNA_{mass} \sim 1000 t$
- $H_{hub} \sim 150$ m, $L_{tower} \sim 120$ m

Mooring lines:

- $d \sim 0.15 m$, $\rho \sim 120 kg.m^{-1}$
- $E_A \sim 2 .10^9$ N, $L \sim 150 m$

Design parameterization

□IEA 15MW wind turbine:

- $D_{rot} \sim 240 m$, $RNA_{mass} \sim 1000 t$
- $H_{hub} \sim 150 \text{ m}, L_{tower} \sim 120 \text{ m}$
- Mooring lines:
 - $d\sim 0.15~m,\,\rho\sim 120~kg.\,m^{-1}$
 - $E_A \sim 2.10^9$ N, $L \sim 150 m$

Design variables:

- length L_{UBB} and diameter D_{UBB}
- center *z*_{UBB}

Often used for FOWT optimization studies

Often used for FOWT optimization studies

[6]

Cumulative: population extends

Often used for FOWT optimization studies

Cumulative: population extends

Fitness: -1 * M_{substructure}

Often used for FOWT optimization studies

Cumulative: population extends

Fitness: -1 * M_{sub}

Constraint handling technic: efficient penalty function

Often used for FOWT optimization studies

Cumulative: population extends

Fitness: -1 * M_{substructure}

Constraint handling technic: efficient penalty function

Fitness scaling and addition operation:

- global and Local optima
- fewer fitness function evaluation

Optimizer: Genetic Algorithm Indiviudal Optima Latin Hypercube Initial population Sampling scale fitness to Fitness scaling population optima

crosover

Optimizer: Genetic Algorithm

FLOAting Wind Energy network

Genetic Algorithm

Object Oriented (python)

Object Oriented (python)

Modular approach

Object Oriented (python)

Modular approach

Multiprocessing

Object Oriented (python)

Modular approach

Multiprocessing

Easy to use (GUI)

Study case:

GICON-TLP with IEA15 MW

FLOAKER FLOAKER

Results

Study case:

GICON-TLP with IEA15 MW

Environmental condition:

• $U_w = 12 \text{ m.s}^{-1}$, $H_s = 4 \text{ m}$, $T_p = 12 \text{ s}$

Study case:

GICON-TLP with IEA15 MW

Environmental condition:

•
$$U_w = 12 \text{ m.s}^{-1}$$
, $H_s = 4 \text{ m}$, $T_p = 12 \text{ s}$

Design variables:

- L_{UBB} = [5 ; 35] m
- D_{UBB}= [5 ; 20] m
- Z_{UBB} = [-10 ; -30] m

Study case:

GICON-TLP with IEA15 MW

Environmental condition:

•
$$U_w = 12 \text{ m.s}^{-1}$$
, $H_s = 4 \text{ m}$, $T_p = 12 \text{ s}$

Design variables:

- L_{UBB} = [5 ; 35] m
- D_{UBB}= [5 ; 20] m
- Z_{UBB} = [-10 ; -30] m

Constraints:

- TwrBenMom < 6.10⁸ Nm
- H_{offset}< 5 m
- V_{offset} < 2 m</p>
- Pitch < 3°</p>

FLOA WE

Results

Study case:

GICON-TLP with IEA15 MW

Environmental condition:

•
$$U_w = 12 \text{ m.s}^{-1}$$
, $H_s = 4 \text{ m}$, $T_p = 12 \text{ s}$

Design variables:

- L_{UBB} = [5 ; 35] m
- D_{UBB}= [5 ; 20] m
- Z_{UBB} = [-10 ; -30] m

Constraints:

- TwrBenMom < 6.10⁸ Nm
- $H_{offset} < 5 \text{ m}$, $V_{offset} < 2 \text{ m}$
- Pitch < 3°</p>

GA Parameters:

- Initial population size: 10
- Max population size: 1000
- max generation number: 300

FLOAting Wind Energy network

Conclusion & Outlook

- \checkmark Model of the GICON-TLP with IEA 15 MW
- ✓ Asses its dynamic in the frequency domain using RAFT
- \checkmark Design optimization framework coupling a genetic algorithm with RAFT
- ✓ Preliminary results with minimized material cost and verified constraints
- Enhance hydrodynamic model
- >Compare numerical model with time domain model and experimental data
- Consider other design variables and constraints

Conclusion & Outlook

- \checkmark Model of the GICON-TLP with IEA 15 MW
- ✓ Asses its dynamic in the frequency domain using RAFT
- \checkmark Design optimization framework coupling a genetic algorithm with RAFT
- ✓ Preliminary results with minimized material cost and verified constraints
- Enhance hydrodynamic model
- >Compare numerical model with time domain model and experimental data
- Consider other design variables and constraints

References

- 1. Messmer T. and al. 2023. Overview of the potential of floating wind in Europe based on metoceandata derived from the ERA5-dataset
- 2. Adam F. and al. 2017. A Modular TLP Floating Substructure to Maximize the Flexibility within the Supply Chain.
- 3. Benifla V. and Adam F. 2022. Development of a Genetic Algorithm Code for the Design of Cylindrical Buoyancy Bodies for Floating Offshore Wind Turbine Substructures.
- 4. Hall M. and al. 2022. An Open-Source Frequency-Domain Model for Floating Wind Turbine Design Optimization.
- 5. Gaertner E. and al. 2020. Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine.
- 6. Hall M. 2012. A Cumulative Multi-Niching Genetic Algorithm for Multimodal Function Optimization.

