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❑High potential Worldwide, particularly in Europe

❑Higher wind loads and extreme sea state

❑Different type of substructures

❑Complex manufacturing and low production rate

❑High Levelized Cost of Energy



The GICON-TLP

3

[2]



The GICON-TLP

3

❑Steel and concrete Tension Leg Platform

[2]



The GICON-TLP

3

❑Steel and concrete Tension Leg Platform

❑Simple manufacturing and installation process

▪ 4 buoyancy bodies

▪ diagonal, vertical and horizontal pipes

[2]



The GICON-TLP

3

❑Steel and concrete Tension Leg Platform

❑Simple manufacturing and installation process

▪ 4 buoyancy bodies

▪ diagonal, vertical and horizontal pipes

❑Numerical and experimental analysis

[2]



The GICON-TLP

3

❑Steel and concrete Tension Leg Platform

❑Simple manufacturing and installation process

▪ 4 buoyancy bodies

▪ diagonal, vertical and horizontal pipes

❑Numerical and experimental analysis

❑Optimization framework for the design of the 

Universal Buoyancy Body (UBB)
[2]
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❑Numerical model: frequency domain dynamic model

❑Optimizer: genetic algorithm

❑Design parameterization: geometrical

❑Objective: minimize the substructure’s mass/cost

❑Constraints: system’s dynamic response

Numerical
model

Optimizer

Parameterization

Objective

Constraints
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❑Response Amplitude for Floating Turbine (RAFT)

▪ Open-source frequency domain code for FOWT

▪ Verified against time domain OpenFAST simulations

▪ Aerodynamics: steady-state Blade-Element-Momentum theory

▪ Hydrodynamics: strip-theory for all submerged members

▪ Moorings: quasi-static model

[4]
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❑GICON-TLP with IEA 15-MW wind turbine

▪ mass and hydrostatic properties

▪ linear hydrodynamic coefficients and mean aerodynamic load 

▪ solve mean offset position

▪ compute linearized viscous drag excitation and damping

▪ solve system’s dynamic response until convergence

▪ get system’s mean offset and extreme values from standard 
deviations (RMS) of the response spectra.

[4]

[4]
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❑Mooring lines:

▪ 𝑑 ~ 0.15 𝑚, 𝜌 ~ 120 𝑘𝑔.𝑚−1

▪ 𝐸𝐴~ 2 . 109 N, 𝐿 ~ 150 𝑚

❑Design variables:

▪ length 𝐿𝑈𝐵𝐵 and diameter 𝐷𝑈𝐵𝐵

▪ center 𝑧𝑈𝐵𝐵
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❑Often used for FOWT optimization studies

❑Cumulative: population extends

❑Fitness:  -1 * Msubstructure

❑Constraint handling technic: efficient penalty function

❑Fitness scaling and addition operation:

▪ global and Local optima

▪ fewer fitness function evaluation

[6]

[6]
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Optimization Framework

❑Object Oriented (python)

❑Modular approach

❑Multiprocessing

❑Easy to use (GUI)
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❑GICON-TLP with IEA15 MW

❑Environmental condition:

▪ Uw = 12 m.s-1 , Hs= 4 m , Tp = 12 s

❑Design variables:

▪ LUBB = [5 ; 35] m

▪ DUBB= [5 ; 20] m

▪ ZUBB = [-10 ; -30] m

❑Constraints:

▪ TwrBenMom < 6.108 Nm

▪ Hoffset< 5 m ,  Voffset < 2 m

▪ Pitch < 3°

❑GA Parameters:

▪ Initial population size: 10

▪ Max population size: 1000

▪ max generation number: 300
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▪ LUBB = 24 m

▪ DUBB= 15 m

▪ ZUBB = -24 m
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✓Model of the GICON-TLP with IEA 15 MW

✓Asses its dynamic in the frequency domain using RAFT

✓Design optimization framework coupling a genetic algorithm with RAFT

✓Preliminary results with minimized material cost and verified constraints

➢Enhance hydrodynamic model 

➢Compare numerical model with time domain model and experimental data

➢Consider other design variables and constraints
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