

DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR OPTIMISED MAINTENANCE OF WIND TURBINES

Maneesh Singh¹ and Arvind Keprate²

- Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, 1. Bergen, Norway.
- 2. Department of Mechanical, Electronics and Chemical Engineering, OsloMet, Norway

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

We are drowning in information but starved for knowledge. John Naisbitt

BrainyQuote[®]

51-1

Core Idea

• Use of DIKW hierarchy for developing inspection / maintenance program for a wind turbine

Abstract

- Describes a proposed framework for an *integrated decision support system* that:
- integrates traditional (RBIM & RCM) and condition-based methods
- helps in preparing inspection-maintenance program for wind turbines
- is simple yet robust
- presentation of uncertainties and its implications.

Demonstrated using a use case of *Generator Bearings in a Wind Turbine*

* Work in progress

Identified Challenge

- Operation of Wind Turbine \rightarrow

Integrity of equipment $(\downarrow) \rightarrow$ Probability of failure (\uparrow).

- Monitoring & inspections \rightarrow

Knowledge about the condition \rightarrow

Directions for the future maintenance.

- Vast amount & imperfect data \rightarrow

Information overflow \rightarrow

Difficult to interpret

5

Flood of Information Swamps Managers/Engineers

Boston Glabe, Aug 15, 1991

General Observations

- Requirement
 - Data \rightarrow Information \rightarrow Knowledge \rightarrow Decision
- Experience shows:
 - Vast amount of data is available
 - Data interpretation lags behind data collection-storage
 - Some data is not rational
 - Difficult to utilise all the available data to generate information
 - Information obtained from analysis often require expert interpretation
 - Not all information is turned to knowledge
 - Difficult to manipulate large amount of knowledge for taking optimised decision
 - Often not all knowledge used for during decision making
- Far more benefits and value can be accrued by proper integration of data with decision-making process

Aim of the Project

Develop a <u>framework</u> for a *human-centric* decision support system

- Help engineers get maximum value out of data
- Aid in developing maintenance program by proper use of data

Transformation of Data to Decision

8

Understanding

Failure Profile of a Bearing

Data Collection

Data is a raw attribute of real or simulated entities

- Process Design Parameters
 - Example, Material of Construction, Dimensions
- Process Operation Parameters
 - Example, Temperature (Bearing, Nacelle, Generator), RPM (bearing)
- Inspection Results
 - Example, NDT results
- Monitoring Data
 - Example, SCADA data
- Numerical and Measurement Based Data
 - Example: Bearing Temperature = 55.3°C

Høgskulen på Vestlandet

Data Processing (1st Stage Transformation)

- **Information** represents the results of a computational process (interpreted data or data with meaning)
- Transform *data* (relevant, rationalized) into *information* (useful, reliable) using deterministicprobabilistic computations
- Predicted Values
 - Example, Predicted Normal Bearing Temperature
- Fault Diagnostics
 - Example, Degradation Detection (Predicted Normal Bearing Temperature < Measured Temperature)
 - Example, Degradation Quantification (Frequency & Magnitude of Threshold Breaching)

Methodology for Degradation Detection

Høgskulen

Effect of Shaft RPM on Temperature of Bearing 1

_Temp_Avg Gen_Bear1. Gen_Temp_Avg

051-2

Actual and Predicted Temperatures of Bearing 1

051.

Next is: **Reasoning (2nd Stage Transformation)**

- **Knowledge** is the data that represents the results of a computer-simulated cognitive process, such as reasoning, • association, learning and perception
- Transform information into knowledge using non-deterministic soft-computing • **IF** (Fault_Quantification **IS** High) **THEN** (Remaining_Useful_Life **IS** Short) **IF** (*Remaining_Useful_Life* **IS** *Short*) **THEN** (*Next_Maintenance_Activity* **IS** *Soon*)
- Fault Prognosis
 - Example, Identification of Degradation Cause (Lubrication, Wear)

19

- Likelihood of Failure
 - Example, "Low", "Medium", "High"
- Remaining Useful Life
 - Example, "Short", "Medium", "Long"

Thanks for your attention

