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The Problem with ‘Traditional’ Offshore
wind

1118 tute

In conventional turbines, the

output power varies as the square Increase demand for expensive
of the radius. However, the Jack Up Vessels (JUVS) expected
weight of the turbine scale to increase the charter price
cubically
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Scaling Laws Potential
modular systems
Redundancy Standardisation
of parts

Multi Rotor Systems (MRS)

The Solution?
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Traditional Turbine
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Why O&M? RS
increase in
components Subsv em 1

o&M means H

Subsystem 2

costs more
transfers?

can
be up to

30% of total

A How does redundancy impact O&M
LCOE*[1]

operations?

! PAAY

Harsher conditions and
increased distance means
weather windows are more
critical

LCOE - Levelised Cost of Energy
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Additional requirements
needed for safety of asset and
personnel
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Offshore
wWind O&M
Influential
Factors

5

Engineering and HAW W%lgj
Mar

Physical Sciences
Research Council HAMBURG i

. ine
ergy ... Systems
Structures CDT



MRS Influential
Factors

- redundancy

- component scaling
-global vs local failures
- small scale components
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Case Study: ScotWind

4 -
.- ScotWind Allocated Zone E3

34 km from selected port
.

; CTV based approach

\Q‘\ Various scales of deployment

20 MW 500 MW 1’
rsityo y i
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Component Selection

= failure rate x cost

Repair cost + lost revenue

|
f/MWh + downtime

waiting time + time to repair
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Component Selection

Dao et al. [3]
A

= failure rate x cost

Carroll etlal. [4]
'Repair cost + lost revenue

UK Round 4 Strike Price

’£/N\Wh‘+ downtime

Site Specificl Strath Tool Dao et al. [3], MclMorland et al.[5]
'waiting time'+ time to repair’
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Turbine Comparison
Monte Carlo based Strath OW O&M Adapted Tool

Blades & hub  pitch  generator gearbox electrical control

10 MW Rating 45 x 500kW

A

°*
/ Use of JUV for failures CTV for all failures

Baseline Operational Global vs local
Expenditure (OpEx) failures
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Sensitivity Analysis - Failure Rate
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Sensitivity Analysis - Failure Rate
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Global Failures
centralised electrical system

Centralised Electrical System - Global Failure * High number of
_ 12 components
o
5 08 » Decrease in
g 08 frequency of
% 04 failure
2?0-2 * Increase in
2 0 impact

500 MW I GW
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Global Failures
centralised electrical & control system

Centralised Electrical & Control System - Global Failure
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Fatigue Strength Analysis

Size Effects: . . .
+ Technological size effect Considered in Detail Classes

« Stress-mechanical size effect ‘ (EC3, DNV, 1IW) or Knock Down

» Surface technological size effect Factors (.FKM) n F§t1gue
. . Calculation Guidelines
o Statistical size effect

What about Failure Rates and Scaling?

» Fatigue Crack Initiation at « Equal overall SR and MRS Surface
Surface ‘ Area
« Failure Rate F of RNA Component

« Considering Square-Cube-Law

on MRS:
Fsp = Fyps = nxF
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RNA Results

1.6 22% OpEx (£)-decrease

24% OpEXx (£) decrease

Total OpEx (Factor of Baseline)
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RNA + 20% decrease across other failures

N
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Total OpEx (Factor of Baseline)
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500 MW I GW
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Conclusions and Further Work

 Similar results for small scale < Root cause analysis of

sites between baseline failures
turbjne and 20MW MRS » What % are fatigue based?
turbine « Classification of MRS

» Key cost components are lost components
revenue and vessel « Global vs local systems
utilisation - Additional risk?

* Availability: 92-98% . Explora.tion of repair

« Capacity Factor: 50.7-53% strategies
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