

Scalability of the CRAFT turbine

Fredric Ottermo¹, Erik Möllerström¹, Petter Eklund¹, Hans Bernhoff^{2,3}

¹Halmstad University, ²Uppsala University, ³World Wide Wind AS

EERA DeepWind, January 18, 2023

Introduction

- Trend in offshore wind: Increased scales!
- VAWTs probably well suited for really large scales:
 - Aerodynamic force F_a scales as area (i.e., L^2).
 - Gravitational force F_g scales as volume (i.e., L^3).
 - For HAWT blades: Gravity implies cyclic load – fatigue

The CRAFT turbine

The CRAFT (Counter-Rotating Axis Floating Tilted) turbine:

- In between HAWT and VAWT.
- Developed by the company World Wide Wind.
- Proposed 8-MW version - baseline in this study:

Tip-speed ratio	6.0
Blade length	86 m
Blade mass	10 ton

nauc	longth	00 111
Blade	mass	10 ton

Scaling model

Similar scaling:

- All proportions preserved.
- Tip-speed ratio kept unchanged.
- Scaling parameter β :
 - Lengths: $\tilde{L} = \beta L$
 - Areas: $\tilde{A} = \beta^2 A$
 - Aerodynamic force: $\tilde{F}_a = \beta^2 F_a$

Material stress: $\sigma = F/A$

• As long as F_a dominates – then σ unchanged...

Scaling model

Similar scaling with slight modification:

Wind profile:

$$U_2 = U_1 \left(\frac{h_2}{h_1}\right)^{\alpha}, \qquad \alpha = 0.08 \quad (z_0 = 0.5 \text{ mm}).$$
 (1)

d

(2)

So...
$$\tilde{U} = \beta^{\alpha} U$$

This implies:

$$\tilde{F}_a = \beta^{2+2\alpha} F_a, \qquad \tilde{P} = \beta^{2+3\alpha} P$$

We want unchanged material stress...

• Impose that wall thickness scales as: $\tilde{d} = \beta^{1+2\alpha} d$.

• Then:
$$\tilde{m} = \beta^{3+2\alpha} m$$

and $\tilde{F}_g = \beta^{3+2\alpha} F_g$.

The CRAFT design

Forces on the blade indicated.

The cyclic nature of the blade load is clear.

Two critical areas highlighted.

Blade attachment to tower

Forces that gives rise to a moment between the attachment points:

- Large forces at the attachment points due to short lever arm.
- Blade chord and $F_{a,tan}$ from BEM analysis with a = 0.2.
- This is the most critical point...

Fatigue analysis

Design ultimate stress – Goodman's rule:

(3)

Assumption:

- Fiberglass
- ▶ 10⁸ cycles
- ► Then: k = 7

Now: Plug in the forces – amplitude and mean – then observe at which scale gravity starts to dominate σ_u ...

Results

- Subscripts Gravity starts to dominate the design work at scale $\beta = 2.9$, with reference to the 8-MW baseline.
- This becomes a likely upper size of the design.
- $\beta = 2.9$ translates into:

Rated power	90 MW
Blade length	250 m
Mass per blade	300 ton

Results

The result is sensitive to the assumed blade mass of the 8-MW baseline.

Conclusions

General conclusions:

- ► The CRAFT design seems to allow for large scales.
- Result dependent on the blade mass

This study does not address...

- ... if the 8-MW baseline is simple or difficult to design.
- ... if the upper scale is practical or economical.

Thank you!

