

2023.01.18

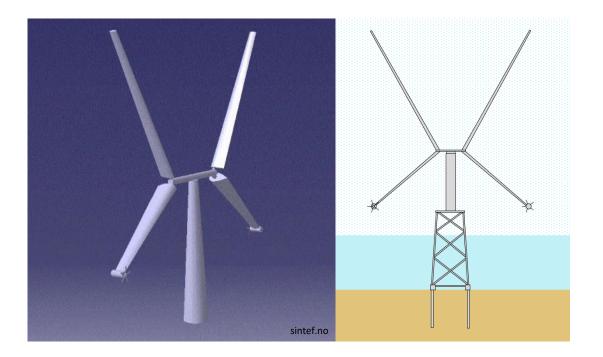
X-ROTOR

X-shaped Radical Offshore Wind Turbine for Overall Cost of Energy Reduction

VAWT support structure mass sensibility due to the aerodynamic load scaling

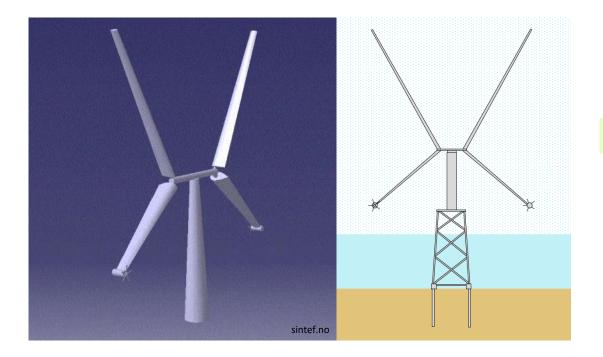
Adriana Correia da Silva, NTNU Supervisor: Michael Muskulus, NTNU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101007135


Overview

- Introduction to X-Rotor Wind Turbine
- Design Conditions
- Design methodology
- Basic Structural Design
- Effect of load reduction

X-Rotor Wind Turbine



- WP1: Project management and coordination
- WP2: Aero-elastic code development and performance
- WP3: Control and Operational Strategy
- WP4: Design of mechanical structure & analysis
- WP5: Power take-off and conversion system design
- WP6: Cost of Energy Reduction Analysis
- WP7: Environmental and Socio-Economic Impact
- WP8: Industry Ratification and Further Development Roadmap
- WP9: Communication, Dissemination
- WP10: Ethics requirements

3

X-Rotor Wind Turbine

- WP1: Project management and coordination
- WP2: Aero-elastic code development and performance
- WP3: Control and Operational Strategy
- WP4: Design of mechanical structure & analysis
 NTNU
- WP5: Power take-off and conversion system design
- WP6: Cost of Energy Reduction Analysis
- WP7: Environmental and Socio-Economic Impact
- WP8: Industry Ratification and Further Development Roadmap
- WP9: Communication, Dissemination
- WP10: Ethics requirements

Design conditions

- Representative North Sea environment
- U70,50 = 36.8 m/s
- Hs,50 = 10.1 m
- Distance to shore 300 km
- Assumed 40 m water depth

14.Norway 5
16.Utsira II
18.Moray Firth 6.Lewis West
15.North Sea Center
12.Hornsea West
7.Sybil Head, Co. Kerry 13.Belwind 1
5. Wave hub
10.Marwick Head
I.SEM-REV
2.Buoy Estaca de Bares
3. Buoy Cabo Silleiro 11. Medit_location
and the second sec
4.Sao Pedro Pilot Zone

Location of 18 potential European offshore sites Li et all (2015)

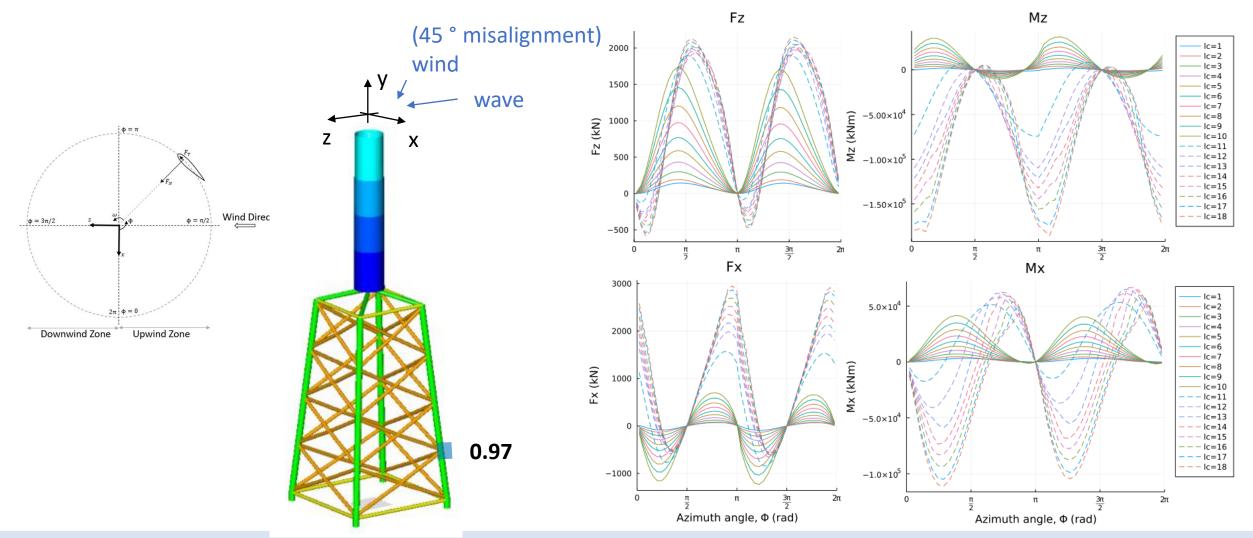
5

Design conditions

- Design according to DNV rules
- Primarily S355 steel considered
- Stress concentration factors according to Efthymiou
- Tentative dimensions / masses of electrical components from WP5
- Lumped load cases for basic design
- Loads from WP2

Design methodology

- Dynamic load simulation
- Fully resolved wave loads (Morison)
- DNV rules
- Design fatigue factor DFF = 3
- Stress concentration factors (Efthymiou)


Reference: Fedem Theory Guide

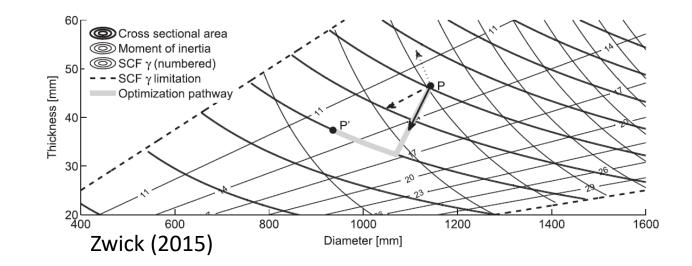
7

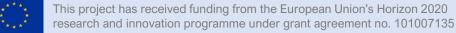
Significant fatigue loading

https://xrotor-project.eu

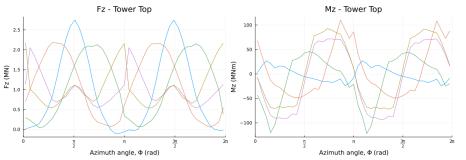
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101007135

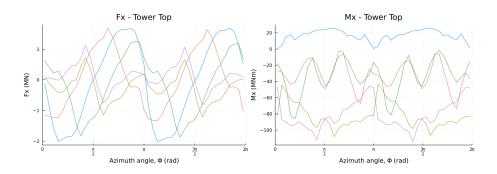
Significant fatigue loading Sensible to control strategy! Fz Mz (45 ° misalignment) 2000 |c=1lc=2 wind lc=3 **▲** Y lc=41500 lc=5 wave lc=6 lc=7 Mz (kNm) –5.00×10' lc=8 Fz (kN) 1000 lc=9 Ζ lc=10 Х lc=11 500 lc=12 -1.00×10^{5} lc=13 |c=14lc=15- lc=16 -1.50×10^{5} - lc=17 Wind Direc lc=18 $\phi = \pi/2$ $\phi = 3\pi/2$ -500 0 π $\frac{3\pi}{2}$ 2π 0 П Fx Мx 3000 lc=1 5.0×10^{4} lc=2 $2\pi \phi = 0$ lc=3 lc=42000 Downwind Zone Upwind Zone lc=5 lc=6 lc=7 Mx (kNm) lc=8 Fx (kN) lc=9 1000 lc=10lc=11lc=12-5.0×10 lc=13 0 lc=14lc=150.97 - lc=16 - lc=17 lc=18 -1000 -1.0×10^{5} 0 π <u>3π</u> 2 2π 2π 0 π $\frac{3\pi}{2}$ Azimuth angle, Φ (rad) Azimuth angle, Φ (rad)

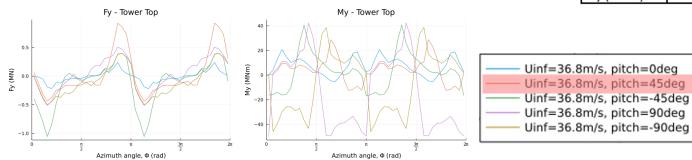

https://xrotor-project.eu


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101007135

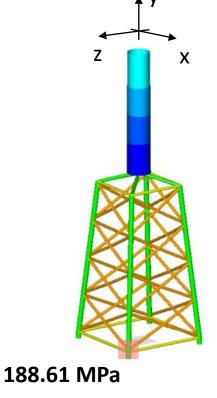
Optimization strategy


- 1. Increase leg diameter until feasible design
- 2. Keep ratio of brace diameter to leg diameter
- 3. Reduce D/t ratio (up to 16) to reduce both SCFs and wave loads



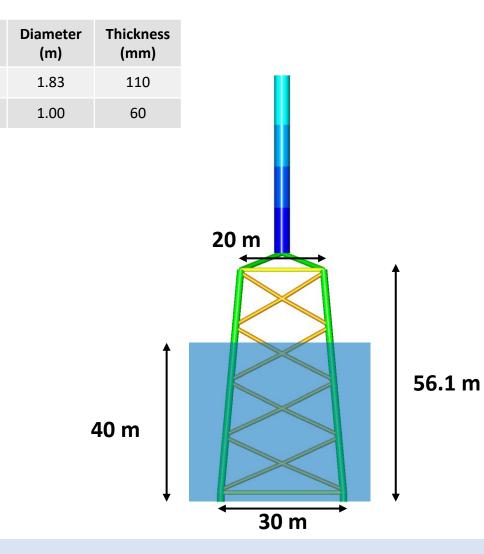


Ultimate Loads Uinf = 36.8m/s



- Turbine parked in any azimuth
- Different blade flag position
- All components applied (no compensation from 2nd rotors)

	Max	Min
Fz (MN)	2,746	-0,105
Fx (MN)	1,689	-2,015
Fy (MN)	0,925	-1,055
Mz (MNm)	110,115	-121,962
Mx (MNm)	25,879	-114,187
My (MNm)	42,201	-49,945



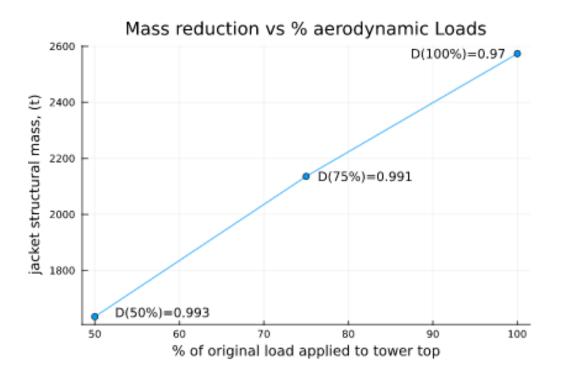
**** * * ***

Basic structural design

- Demonstrates feasibility
- t between 60-110 mm
- SCFs generally between 2-5
- Stiff-stiff design at 1.66 Hz
- Top mass 224 tons (rotor + equipment)
- Primary steel mass 2574 tons (excl. piles)

Legs

Braces



Effect of load reduction

Applied loads on the tower top were reduced to 75% and 50% of the original components

% load applied	Mass (t)
100	2574
75	2136
50	1635

Main conclusions

- Design loads sensitive to control strategy
 - Need to optimize / update loads
- Offshore support structure feasible
 - But potentially heavy / expensive
- Still a lot of room for improvement...
 - Need for computer-aided optimization

Next steps

- Jacket design including flexible piles
- Access the influence of blades's centripetal and gravity loads
- Provide input to new control strategies
- Structural optimization

X-Rotor session: Friday 9h

Friday 20 January

	7A) Societal impact and controversies Chairs: Rita V. D'Oliveira Bouman, NTNU and Lena Kitzing, DTU	7B) Operation & Maintenance Chairs: Iver B. Sperstad, SINTEF and Jonas Kaczenski, Fraunhofer	7C) Side-event: XROTOR (0900-1130)
0900	Introduction by chair	Introduction by chair	The XROTOR consortium (https://xrotor-
0905	Whispers in the Wind: Ethical dimensions of social conflict in offshore wind - Rita V. D'Oliveira Bouman, SINTEF Ocean	The Sensitivity of Failure Definitions on Wind Turbine Failure Rate and Availability Estimates – Fraser Anderson, University of Edinburgh	project.eu/) invites for a side-session at Deepwind 2023. Agenda
0920	Identifying and addressing societal aspects of offshore wind power in the North Sea – Tomas Moe Skjølsvold, Sara Heidenreich, NTNU	Multirotor wind turbine systems: an exploration of failure rates and failure classification – Jade McMorland, University of Strathclyde	Overview of the concept and operation (William Leithead / Laurence Morgan, Strathclyde) (30 minutes) (CFD analysis and aerodynamic models (Carlos Ferreira, Delft, & Beatriz Mendez Lopez, CENER) (30 minutes) Discussion and Break (10-15 minutes
0935	From where the wind blows – The social dynamics of wind power opposition – Sigurd Hilmo Lundheim, NTNU	Effects of grid demand oscillations on degradation of power train system in offshore wind turbines – Farid Khazaeli Moghadam, NTNU	
0950	Just wind power? Mapping of Norwegian ownership models and decision-making processes – Kim-Andre Myhre Arntsen, NTNU	Support System for Optimised Maintenance of Horizontal Axis Wind Turbines – Arvind Keprate, OsloMet	depending on length of discussion) Structural models (Michael Muskulus, NTNU) (20 minutes)
1005	Leveraging innovative technology to address societal interests in offshore wind farm development, Jan-Tore Horn, Vind Technologies AS	Technical modelling challenges for large idling wind turbines – Galih Bangga, DNV Services UK	Power take-off systems (David Campos- Gaona, Strathclyde) (15 minutes) Socio-economic and environmental impact (Niall Dunphy, UCC) (20 minutes)
1020	Closing by chair	Closing by chair	 Cost of energy modelling James Carroll,
1030	Break		Strathclyde) (15 minutes) Discussion and summing up (5 to 10 minutes)

References

Leithead, William et al., 2019. The X-Rotor Offshore Wind Turbine Concept. Journal of physics. Conference series, 1356, p.12031. doi:10.1088/1742-6596/1356/1/012031

Li, Gao, Z., & Moan, T. (2015). Joint Distribution of Environmental Condition at Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices. Journal of Offshore Mechanics and Arctic Engineering, 137(3), 31901. https://doi.org/10.1115/1.4029842

Zwick, D. and Norges teknisk-naturvitenskapelige universitet Institutt for bygg, anlegg og transport (2015) Simulation and optimization in offshore wind turbine structural analysis, 2015:80.

