PhD candidate: Xu Ning Supervisor: Mostafa Bakhoday Paskyabi

EERA DeepWind Conference 18~20 Jan 2023, Trondheim, Norway

UNIVERSITY OF BERGEN

Presentation Outline

• • • •

Ι	П	Ш	IV
Introduction	Method	Results	Conclusions
 Background Research objectives 	 Mesh transformation Numerical method Simulation setup 	 Wave-induced velocity Wave-induced pressure Profiles of mean wind and turbulence 	ConclusionsFuture work

UNIVERSITY OF BERGEN

1

Introduction

Introduction

Background

- Waves affect the exchange of momentum, energy and mass between the atmosphere and ocean.
- Wave effects depends on multiple environmental factors, including windwave states and stability conditions.

1. Deskos, G., Lee, J. C., Draxl, C., & Sprague, M. A. (2021). Review of Wind–Wave Coupling Models for Large-Eddy Simulation of the Marine Atmospheric Boundary Layer. *Journal of the Atmospheric Sciences*, 78(10), 3025-3045.

UNIVERSITY OF BERGEN

3

Introduction

Background

Waves with long wavelengths and periods arriving from a distant source are considered Swell.

Observations in Atlantic ocean: In low to modest wind, disequilibrium between the wind and wave is the most common state, i.e. waves propagate faster than wind and with a misaligned direction[1].

^{1.} Sullivan, P. P., Edson, J. B., Hristov, T., & McWilliams, J. C. (2008). Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. *Journal of the Atmospheric Sciences*, *65*(4), 1225-1245.

UNIVERSITY OF BERGEN

4

Introduction

Background

Wave-induced disturbances decay exponentially with height.

• Semedo, A., Saetra, Ø., Rutgersson, A., Kahma, K. K., & Pettersson, H. (2009). Wave-induced wind in the marine boundary layer. Journal of the Atmospheric Sciences, 66(8), 2256-2271.

Waves can still have strong impacts on the atmosphere.

- Smedman, A., Högström, U., Sahlée, E., Drennan, W. M., Kahma, K. K., Pettersson, H., & Zhang, F. (2009). Observational study of marine atmospheric boundary layer characteristics during swell. Journal of the atmospheric sciences, 66(9), 2747-2763.
- Sullivan, P. P., Edson, J. B., Hristov, T., & McWilliams, J. C. (2008). Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. Journal of the Atmospheric Sciences, 65(4), 1225-1245.

Introduction

Research Objectives

- To develop a modelling tool that is able to reproduce the waveinduced effects.
- > To investigate wave effects on the atmospheric boundary layer flow.

Method

7

Method

Mesh transformation

Resolve the geometries of the wave surface

Coordinate transform

Physical Domain

$$\zeta = \zeta$$

$$\xi = x$$

$$\psi = y$$

$$\zeta = \frac{z - \eta(x, y, t)}{\overline{h} - \eta(x, y, t)}$$

Computational Domain

8

9

Method

Numerical method

Continuity equation $\frac{\partial u}{\partial \xi} + \zeta_x \frac{\partial u}{\partial \zeta} + \frac{\partial v}{\partial \psi} + \zeta_y \frac{\partial v}{\partial \zeta} + \zeta_z \frac{\partial w}{\partial \zeta} = 0$

 $\frac{\partial v}{\partial \tau}$

$$\begin{aligned} \frac{\partial u}{\partial \tau} + \zeta_t \frac{\partial u}{\partial \zeta} &= -\left(\frac{\partial uu}{\partial \xi} + \zeta_x \frac{\partial uu}{\partial \zeta}\right) - \left(\frac{\partial uv}{\partial \psi} + \zeta_y \frac{\partial uv}{\partial \zeta}\right) - \zeta_z \frac{\partial uw}{\partial \zeta} \\ &- f_2 w + f_3 (v - v_g) - \frac{1}{\rho_0} \left(\frac{\partial p}{\partial \xi} + \zeta_x \frac{\partial p}{\partial \zeta}\right) \\ &- \left(\frac{\partial}{\partial \xi} + \zeta_x \frac{\partial}{\partial \zeta}\right) \left(\overline{u'' u''} - \frac{2}{3}e\right) - \left(\frac{\partial}{\partial \psi} + \zeta_y \frac{\partial}{\partial \zeta}\right) \left(\overline{u'' v''}\right) - \zeta_z \frac{\partial}{\partial \zeta} \left(\overline{u'' w''}\right) \end{aligned}$$

Momentum equation

$$\begin{split} + \zeta_t \frac{\partial v}{\partial \zeta} &= -\left(\frac{\partial vu}{\partial \xi} + \zeta_x \frac{\partial vu}{\partial \zeta}\right) - \left(\frac{\partial vv}{\partial \psi} + \zeta_y \frac{\partial vv}{\partial \zeta}\right) - \zeta_z \frac{\partial vw}{\partial \zeta} \\ &- f_3(u - u_g) - \frac{1}{\rho_0} \left(\frac{\partial p}{\partial \psi} + \zeta_y \frac{\partial p}{\partial \zeta}\right) \\ &- \left(\frac{\partial}{\partial \xi} + \zeta_x \frac{\partial}{\partial \zeta}\right) \left(\overline{v''u''}\right) - \left(\frac{\partial}{\partial \psi} + \zeta_y \frac{\partial}{\partial \zeta}\right) \left(\overline{v''v''} - \frac{2}{3}e\right) - \zeta_z \frac{\partial}{\partial \zeta} \left(\overline{v''w''}\right) \end{split}$$

$$\begin{aligned} \frac{\partial w}{\partial \tau} + \zeta_t \frac{\partial w}{\partial \zeta} &= -\left(\frac{\partial wu}{\partial \xi} + \zeta_x \frac{\partial wu}{\partial \zeta}\right) - \left(\frac{\partial wv}{\partial \psi} + \zeta_y \frac{\partial wv}{\partial \zeta}\right) - \zeta_z \frac{\partial ww}{\partial \zeta} \\ &+ f_2 u + g \frac{\theta_V - \langle \theta_V \rangle}{\langle \theta_V \rangle} - \frac{1}{\rho_0} (\zeta_z \frac{\partial p}{\partial \zeta}) \\ &- \left(\frac{\partial}{\partial \xi} + \zeta_x \frac{\partial}{\partial \zeta}\right) (\overline{w''u''}) - \left(\frac{\partial}{\partial \psi} + \zeta_y \frac{\partial}{\partial \zeta}\right) (\overline{w''v''}) - \zeta_z \frac{\partial}{\partial \zeta} (\overline{w''w''} - \frac{2}{3}e) \end{aligned}$$

N BRACE N

UNIVERSITY OF BERGEN

Turbulence closure and discretization

Turbulence closure

1.5-order Deardorff (1980)

- Time advance
 3-order Runge-Kutta
- Advection scheme
 5-order upwind Wicker and Skamarock (2002)

BERGEN OFFSHORE WIND CENTER

Pressure solver

multigrid

10

Method

Simulation setup

• Mesh N_x, N_y, N_z = 256, 256, 160 Δ_x , Δ_y , Δ_z = 4.6875, 4.6875, 2.0 ~ 16.0 m

Geostrophic wind

 u_g , v_g = 5.0, 0.0 m/s

- Stability condition neutral
- Simulation time

UNIVERSITY OF BERGEN

20h + 20min

- Vertical boundary condition cyclic
- Bottom boundary condition

 $\eta(t, x) = A \sin[k(ct - x)]$ $u(t, x) = \omega A \sin[k(ct - x)]$

 $w(t, x) = \omega A \cos[k(ct - x)]$

Table of wave parameters

Case ID	Wave amplitude	Wave length	Wave phase speed	Wave direction
1	-	-	-	-
2	1.6 m	100m	12.5 m/s	following
3	1.6 m	100m	12.5 m/s	opposing

Results

Results

Wave-induced velocity

 Fluctuation of horizontal velocity at x-y plane The strength of wave-coherent flow structures depend on the windwave condition and the height.

Results

Wave-induced velocity

no wave

Results

Power spectral density curves at various heights

Results

Wave-induced velocity

tri-decomposition of velocity

wave-induced velocity

$$\sum_{k=0}^{N-1} u(t+kT, x, y, z) \Big/ N$$

Results

Wave-induced velocity

Mesh transformation

Wave-induced pressure

Wind following wave

- 200 $\lambda/2$ 0.00 00.0 following -15 175 10 opposing 5 $\lambda/4$ 150 0 -2.00 -2.00 2.00 -5 by -10 d 2.00 -4.00 -4.00 4.00 4.00 6.00 -6.00 125 -15 6.00 6.00 -20 $\lambda/2$ $3\lambda/2$ 2λ 0 $\widehat{\underline{\epsilon}}_{100}$ Ν Wind opposing wave 75 $\lambda/2$ 20 0.00 -15 -10 50 -2.00 -2.00 2.00 2.00 $\lambda/4$ 0 0 _E -5 _b -10 d -4.00 -4.00 4.00 4.00 25 6.00 6.00 6.00 8.00 -15 0 -20 0↓ -0.15 -0.10-0.050.00 0.05 $\lambda/2$ $3\lambda/2$ zλ 0 λ form stress (m^2/s^2) UNIVERSITY OF BERGEN 17 BERGEN OFFSHORE WIND CENTER
- pressure distribution along the surface

no wave

pressure

gradient

Results

Profiles of the mean wind

Mean wind

Results

Profiles of the turbulence kinetic energy

Turbulence

- The wind-following (opposing) wave reduces (increases) the momentum flux near the surface.
- The wind shear is mitigated (enhanced) by the waveinduced stress. As a result, the TKE decreases (increases).

BERGEN OFFSHORE WIND CENTER

UNIVERSITY OF BERGEN

Conclusions

Conclusions

- Conclusions
 - 1. Strong waves can induce highly coherent flow structures (within the height of half wave length) that increase the turbulent intensity near the surface.
 - 2. The asymmetric pressure distribution together with wave-induced momentum fluxes act as a thrust or drag force and modify the wind shear and wind veer across the whole boundary layer.
- Future work

D Effects of irregular waves.

- □ How wave effects change with stability conditions.
- □ Waves effects on a wind farm.

Thank you for your attention!

