

Is IEC turbulence valid offshore at large heights?

Abdul Haseeb Syed, Jakob Mann DTU Wind Energy

Motivation

- Wind turbines are breaking the ceiling.... Literally!
- Need of accurate models that can predict the turbine loads at large heights.

Data

- Air Mass Transformation Experiment (AMTEX)
- Temporal range: 1975-02 to 1975-03
- Location: East China Sea (Naha Island, Japan)

Data

Spectra Analysis

Sampling Frequency Time series length for spectra calculation Overlap percent Signal detrending Hanning window Log smoothing

20 Hz 225 s or 22.5 km 150 s or 15 km (Only for Flight 5) 50 % Applied

Not applied

Applied

Results: Spectra

- Along the wind measurements
- Less statistics

DTU

• More fluctuations at lower frequencies

Results: Spectra (cont.)

• More statistics

DTU

• Less fluctuations at lower frequencies

Second order statistics from time series

DTU

Spectra Fitting

- Mann Uniform Shear Model is applied to fit the spectra. (Recommended by IEC 61400-1:2019 for design load calculations)
- The model has three paramters:
 - Dissipation factor, $\alpha \epsilon^{2/3}$
 - Length Scale, L
 - Shear distortion or Anisotropy parameter, Γ
- Only **w spectrum** and **uw cross-spectrum** are fitted to the model.

Longitudinal measurements

- Fit using w and uw spectra
- The variance in w-component increases with height
- No prominent spectral gap

Transvere measurements

 10^{-2}

 $k_2 [m^{-1}]$

10⁻¹

DTU

Mann Model Parameters

Main findings

- Different turbulence scales and spectra observed below and above the surface layer (100 m).
- Above the surface layer w-spectra energy exceeds u and v components, contrary to IEC turbulence models/standards.
- Higher convection leads to large w-length scales. But at lower heights, w-length scales are constrained by the sea surface.
- The large energy in u- and v- spectrum at lower frequencies correspond to 2D meso-scales where the vertical fluctuations (w-spectra) die out.

Thank you.

Acknowledgement: The work presented here received funding from the European Union Horizon 2020 research and innovation programme under grant agreement no. 861291.

