

Knowledge for Tomorrow

Retrieval of met-ocean parameters from satellite observations: applications for offshore wind energy

Abdalmenem Owda₍₁₎, Andrey Pleskachevsky₍₂₎, Merete Badger₍₁₎, Xiaoli Guo Larsén ₍₁₎ & Dalibor Cavar₍₁₎

(1) Technical University of Denmark, Department of Wind and Energy Systems

(2) German Aerospace Center, Maritime Safety and Security Lab Bremen

EERA DeepWind Conference 2023 18th – 20th of January 2023, Trondheim

Knowledge for Tomorrow

Contents of the presentation

- Introduction & Motivation.
- Synthetic Aperture Radar (SAR) Satellites.
- Sea state algorithms by DLR.
- Validation area.
- Conclusion and currents works.

Introduction and Motivation

For offshore wind energy

- Met-ocean conditions are needed for offshore wind energy at the early stage of offshore wind farms planning.
- The transition from land to ocean yields many complicated mechanisms that modulate the sea-surface waves. *Refraction by bathymetry* is one of these mechanisms.
- Open oceans have also complicated mechanism especially when there are stormy conditions such as *hurricanes* and *extreme wave conditions*.
- Interaction between the atmosphere and ocean, through ocean surface wave, has significant impact on the *transfer of momentum and heat* a cross the atmospheric boundary layer.

Synthetic Aperture Radar (SAR)

Active microwave systems (C-band 5.405 GHz) that operate *nearly independent* of weather conditions, day-and-night and cloud coverage.

Sentinel-1 monitoring motion www.esa.int

Synthetic Aperture Radar (SAR)

- Sentinel-1 (A/B) Interferometric Wide (IW) VV polarization- a 6 day revisiting time.
- Ievel 1, <u>Ground Range Detected High</u> (GRDH) resolution, <u>10x10</u> m pixel spacing.

Sea state algorithm

CWAVE_EX has series of data preparation steps consisting of: <u>SAR</u> reading, calibration, land masking, subscience preparation, image outlier filtering, smoothing and de-noising.

"Linear regression problem with 131 features"

N^⁰

1

2

3

6

7

8

Parameter

mean wave period

mean period windsea

Retrieval of sea state parameters

https://ovl.oceandatalab.com/

ID	SAR Scene
1	S1A_IW_GRDH_1SDV_ 20220603 T225009_ 20220603 T225034_043505_0531C8_0045
2	\$1A_IW_GRDH_1\$DV_ 20220603 T225059_ 20220603 T225124_043505_0531C8_9CFF
3	S1A_IW_GRDH_1SDV_ 20220603 T225034_ 20220603 T225059_043505_0531C8_9179
4	S1A_IW_GRDH_1SDV_ 20220603 T225009_ 20220603 T225034_043505_0531C8_0045

DLR

Validation area

Validation results Hs and Tm2

Conclusion and Current works

Conclusion

- Reliability of using SAR data in retrieval of met-ocean parameters. In the validation area, RMSE Hs VS Hs-NDBC was about 41 cm and RMSE Tm2 VS APD-NDBC about 1 sec.
- ✤ Using higher resolution data than 10x10 m pixel spacing yields better RMSE.
- Enhance maritime awareness and coupling atmosphere and ocean models.

Currents work

Derivation of sea surface roughness length from SAR-IW data.

✤Assessment on retrieved SAR wind in deep and shallow waters.

References

- A. Pleskachevsky, B. Tings, S. Wiehle, J. Imber, and S. Jacobsen, "Multiparametric sea state fields from synthetic aperture radar for maritime situational awareness," *Remote Sensing of Environment*, vol. 280, no. September 2021, 2022, doi: 10.1016/j.rse.2022.113200.
- A. Pleskachevsky, S. Jacobsen, B. Tings, and E. Schwarz, "Estimation of sea state from Sentinel-1 Synthetic aperture radar imagery for maritime situation awareness," *International Journal of Remote Sensing*, vol. 40, no. 11, pp. 4104–4142, 2019, doi: 10.1080/01431161.2018.1558377.
- S. Rikka, A. Pleskachevsky, S. Jacobsen, V. Alari, and R. Uiboupin, "Meteo-Marine parameters from Sentinel-1 SAR imagery: Towards near real-time services for the Baltic Sea," *Remote Sensing*, vol. 10, no. 5, 2018, doi: 10.3390/rs10050757.

