Implementation of a Simple Actuator Disk for Large Eddy Simulation (SADLES) in the WRF Model

Hai Bui, Mostafa Bakhoday-Paskyabi, and Mohammadreza Mohammadpour-Penchah

Geophysical Institute, University of Bergen, and Bergen Offshore Wind Centre

Why do we simulate turbine wakes?

A good understanding of the interaction between wind turbines and the atmospheric boundary layer is critical for wind energy assessment and wind farm construction planning.

What do we need from a wind turbine simulation?

- Accurate wake presentation
- Realistic atmospheric conditions
- Turbine-turbine, Farm-farm interactions

Why yet another turbine model?

A Simple Actuator Disk model for Large Eddy Simulation (SADLES)

The thrust coefficient C_{τ} is assumed to depend on V_0 only, and can be derived from a more complicated model or turbine manufactures

Implementation of **SADLES** within the **WRF** model

Two options of SADLES

Option 1

Direct evaluation of the axial induction factor \boldsymbol{V}_0 is measure at 2 diameter ahead

Option 2

Infered evaluation of the axial induction factor (From the 1-D momentum theory)

$$a = \frac{|\mathbf{V}_0|}{|\mathbf{V}|},$$

$$a = \frac{1}{2} (1 - \sqrt{1 - C_T(|\mathbf{V}|)})$$

Add tendencies to WRF model

zonal wind

 $\left. \frac{\partial U}{\partial t} \right|_T = -\frac{1}{2(1-a)^2} \mu_d C_T |\mathbf{V}| u F_A$

 $\left. \frac{\partial V}{\partial t} \right|_T = -\frac{1}{2(1-a)^2} \mu_d C_T |\mathbf{V}| v F_A$

medional wind

Turbulent kinetic energy

$$\left. \frac{\partial \text{TKE}}{\partial t} \right|_T = \frac{1}{2(1-a)^3} \mu_d C_{TKE} |\mathbf{V}|^3 F_A$$

with $C_{TKE} = f_{TKE}(C_T - C_P)$ $f_{TKE} = 0.5$ in this study

Example 1: Idealized experiments with a 5-MW turbine

Spin up time: 24h, Simulation time: 5h

PALM

(https://palm.muk.uni-hannover.de/trac) Using an actuator disk with rotation, based on BEM theory

Direct evaluation $a = \frac{|\mathbf{V}_0|}{|\mathbf{V}|}$

WRF-SADLES-Opt2 Using1-D momentum theory $a = \frac{1}{2}(1 - \sqrt{1 - C_T})$.

Υ (m)

(b) P30m

(d) W30m_Opt1

(f) W30m_Opt2

4-h average wind speed

Wake deficit

Example 2: Realistic wind farms simulations

Downscaling of ERA5 data using 5 nested domains

Domain	$N_x \times N_y \times N_z$	Δx (m)	$\Delta t [{ m s}]$	L_x [km]	L_y [km]
D01	$385\times321\times60$	9000	45	3456	2880
D02	$481\times 382\times 60$	3000	15	1440	1143
D03	$322\times322\times60$	1000	5	321	321
D04	$321\times321\times60$	200	1	64	64
D05	$481 \times 481 \times 60$	40	1/5	19.2	19.2

It took about 20 hours using 1028 CPU cores.

90-m wind speed

- 7

6

at 08Z Sep 24, 2016

5-h average

Alpha Ventus turbines

5-h ambient wind speed

5-h turbine powers

About 35% power reduction

Summary

- We have implemented a Simple Actuator Disk model for Large Eddy Simulation (SADLES) within the Weather Research and Forecasting (WRF) system.
- WRF-SADLES is comparable to the PALM-WTM (using Actuator Disk with Rotation) model in simulating turbine far wakes at 10-meter resolution.
- WRF-SADLES has better agreement between the resolutions of 30 meters and 10 meters, making it suitable for LES studies with a coarser resolution and less computing power.
- We demonstrated a realistic downscaling simulation of multiple wind farms.
- SADLES will be released as open-source software for open research purposes.