

30 GW Offshore wind in Norway – wind power correlations and smoothing effects

Harald G Svendsen, John O G Tande SINTEF Energi

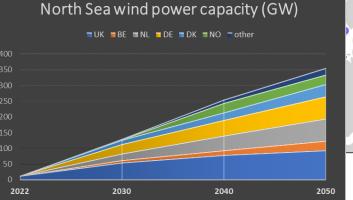
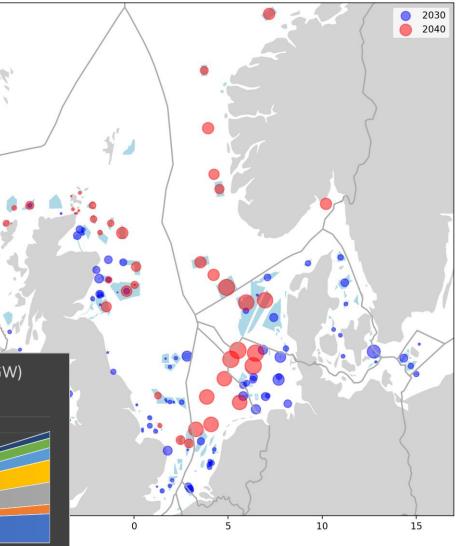

Norway sets 30GW offshore wind energy target

Photo by Anne Kristin Hjukse at the Norwegian Prime Ministers Office

Published: 12 May 2022

Norwegian Prime Minister Jonas Gahr Støre anno press conference this week that the Government areas for 30,000 MW (30 GW) for offshore wind p 2040.


64

62

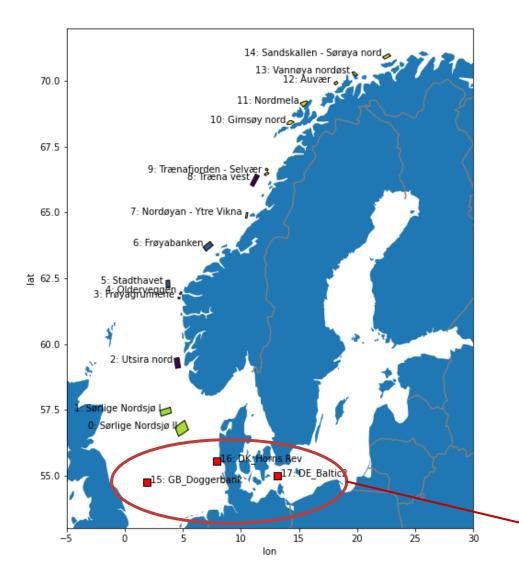
60

58

56

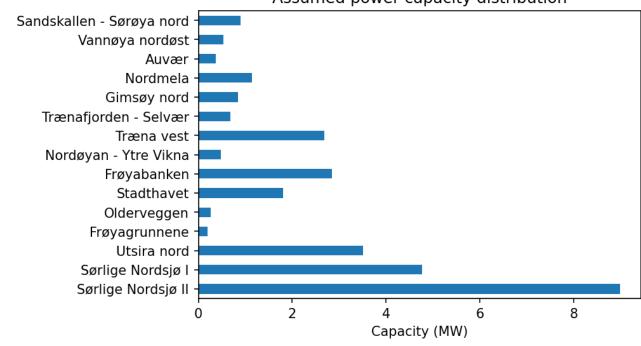
30 GW will give 130 TWh/year, similar to present hydro power system

- Can we by studying wind power time-series say something about its impact on the system?
 - Variability and need for balancing on short and long time scales
 - Correlations as a proxy for *achieved price* or "cannibalisation" effect



https://www.northwindresearch.no/

https://oceangridproject.no/

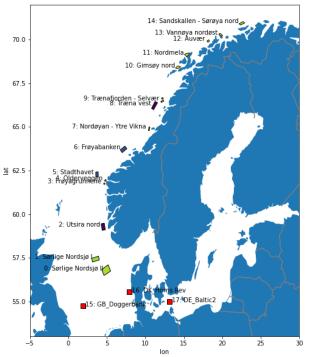

30 GW offshore wind in Norway Time-series study

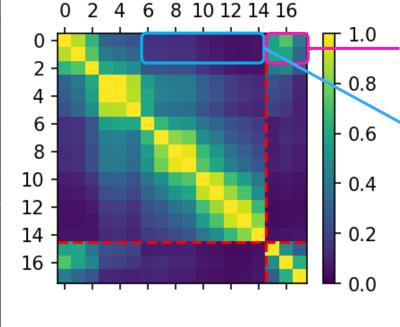
Assumption:

30 GW capacity distributed according to area (NVE 2012 sites):

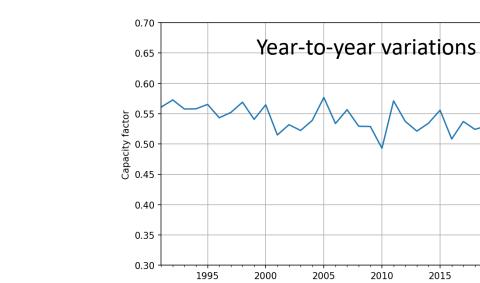
Assumed power capacity distribution

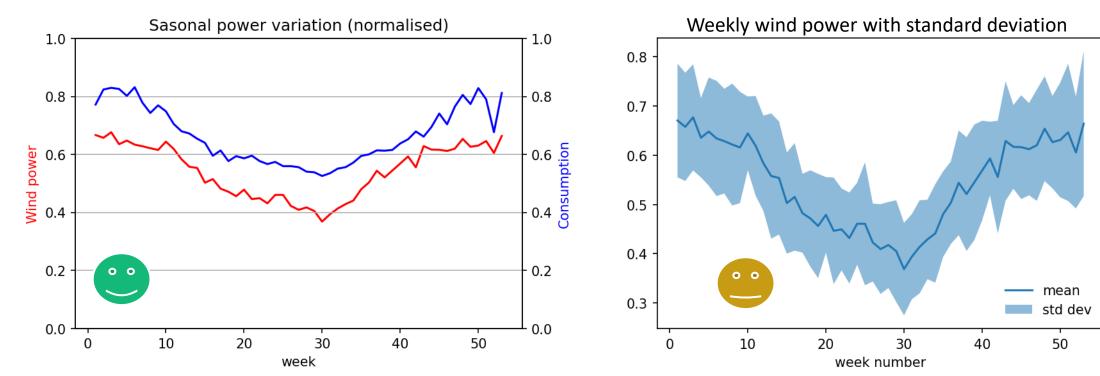
Included for comparison




- 29 years of hourly wind speed data at selected locations
 - MERRA-2 Reanalysis data
- Converted to wind power
 - effective power curve representing wind farm (Gauss filter on top of a single turbine power curve)
- Statistical analysis
 - Compute and plot various metrics of general interest

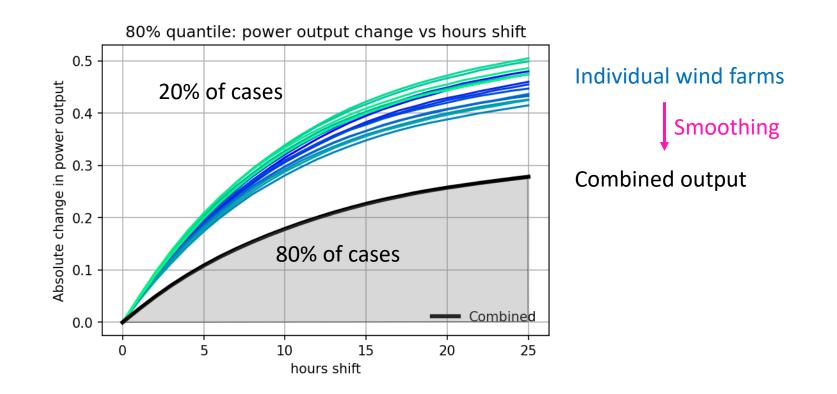
Correlation of wind power at different sites


+1: perfectly correlated0:uncorrelated-1: perfectly anti-correlated

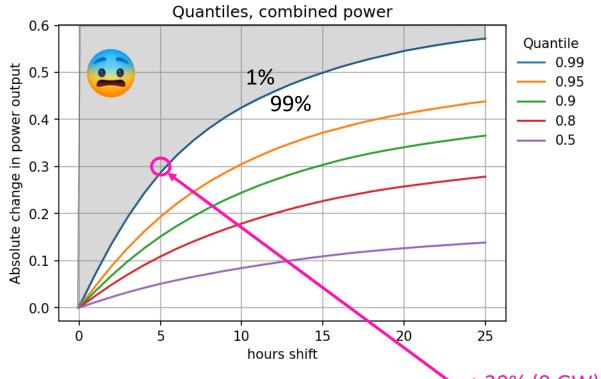


- Correlation coefficients hour-byhour power output at different wind farms
- Sørlige Nordsjø vs Europe: High (0.34-0.73)
- Sørlige Nordsjø vs Frøyabanken and farther north : Low (<0.15)
 - Similar result when looking at dayby-day average values

Teknologi for et bedre samfunn



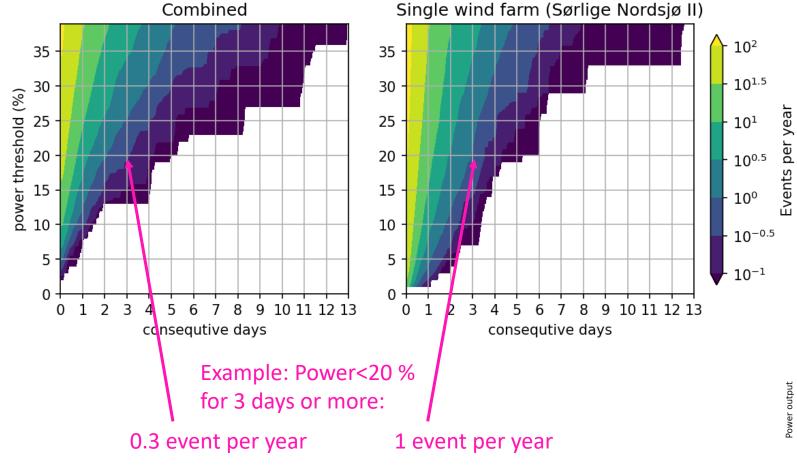
SINTEF Seasonal variation Wind power



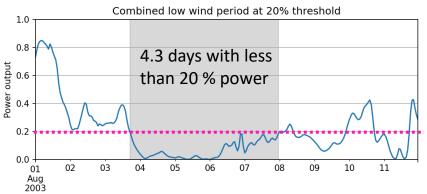
How much does the power output change from one hour to the next few hours?

Very large ramps within a few hours are not common, but do occur

Must be compensated for, e.g.

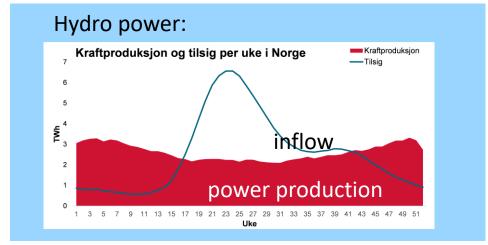

- ramp control
- other generation or flexible resources

Not possible to reliably identify "worst case" scenario with our simplified approach.


>30% (9 GW) change during 5 hours Occurs in less than 1% of the hours

Teknologi for et bedre samfunn

- Several consecutive days of little wind do occur
- Geographical smoothing makes it less frequent for combined power


Thank you for your attention

Correlation coefficients – hourly time series

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D	н	В
0	1.000000	0.891679	0.660122	0.317546	0.290172	0.251498	0.134178	0.146067	0.122021	0.125346	0.083641	0.063037	0.046833	0.043950	0.056034	0.580686	0.726229	0.421194
1	0.891679	1.000000	0.732527	0.401377	0.369335	0.329114	0.158844	0.158420	0.136821	0.141586	0.093945	0.071178	0.049915	0.045444	0.054194	0.589770	0.576323	0.339743
2	0.660122	0.732527	1.000000	0.604587	0.558783	0.487500	0.261657	0.269053	0.238859	0.239675	0.154039	0.115103	0.071268	0.053148	0.057172	0.394220	0.455865	0.261509
3	0.317546	0.401377	0.604587	1.000000	0.993905	0.886574	0.562044	0.428159	0.404047	0.402506	0.297771	0.244345	0.177039	0.141350	0.123837	0.251511	0.209553	0.111582
4	0.290172	0.369335	0.558783	0.993905	1.000000	0.895698	0.597946	0.444130	0.418668	0.416999	0.311861	0.257796	0.189194	0.152404	0.131547	0.231768	0.191953	0.101907
5	0.251498	0.329114	0.487500	0.886574	0.895698	1.000000	0.601059	0.389797	0.365593	0.354122	0.260254	0.212012	0.151453	0.120212	0.103310	0.196472	0.160737	0.090911
6	0.134178	0.158844	0.261657	0.562044	0.597946	0.601059	1.000000	0.668535	0.551306	0.517230	0.384454	0.327438	0.251806	0.214676	0.170437	0.079176	0.116840	0.095714
7	0.146067	0.158420	0.269053	0.428159	0.444130	0.389797	0.668535	1.000000	0.825533	0.782483	0.499218	0.400088	0.295411	0.242797	0.193653	0.083925	0.129530	0.108161
8	0.122021	0.136821	0.238859	0.404047	0.418668	0.365593	0.551306	0.825533	1.000000	0.961113	0.672490	0.530499	0.381699	0.304863	0.233674	0.080027	0.102058	0.075364
9	0.125346	0.141586	0.239675	0.402506	0.416999	0.354122	0.517230	0.782483	0.961113	1.000000	0.732327	0.588658	0.434186	0.353276	0.272366	0.088120	0.103240	0.076963
10	0.083641	0.093945	0.154039	0.297771	0.311861	0.260254	0.384454	0.499218	0.672490	0.732327	1.000000	0.906870	0.691846	0.560312	0.397208	0.058877	0.069064	0.052659
11	0.063037	0.071178	0.115103	0.244345	0.257796	0.212012	0.327438	0.400088	0.530499	0.588658	0.906870	1.000000	0.857918	0.714091	0.491844	0.043110	0.052353	0.044299
12	0.046833	0.049915	0.071268	0.177039	0.189194	0.151453	0.251806	0.295411	0.381699	0.434186	0.691846	0.857918	1.000000	0.924696	0.668989	0.034735	0.038787	0.037243
13	0.043950	0.045444	0.053148	0.141350	0.152404	0.120212	0.214676	0.242797	0.304863	0.353276	0.560312	0.714091	0.924696	1.000000	0.820897	0.033269	0.038156	0.043093
14	0.056034	0.054194	0.057172	0.123837	0.131547	0.103310	0.170437	0.193653	0.233674	0.272366	0.397208	0.491844	0.668989	0.820897	1.000000	0.048624	0.058707	0.065361
D	0.580686	0.589770	0.394220	0.251511	0.231768	0.196472	0.079176	0.083925	0.080027	0.088120	0.058877	0.043110	0.034735	0.033269	0.048624	1.000000	0.495449	0.293420
Н	0.726229	0.576323	0.455865	0.209553	0.191953	0.160737	0.116840	0.129530	0.102058	0.103240	0.069064	0.052353	0.038787	0.038156	0.058707	0.495449	1.000000	0.636377
В	0.421194	0.339743	0.261509	0.111582	0.101907	0.090911	0.095714	0.108161	0.075364	0.076963	0.052659	0.044299	0.037243	0.043093	0.065361	0.293420	0.636377	1.000000

Seasonal variation Today – hydro power

For comparison

Water reservoirs compensate for the mismatch in power demand (production) and water inflow