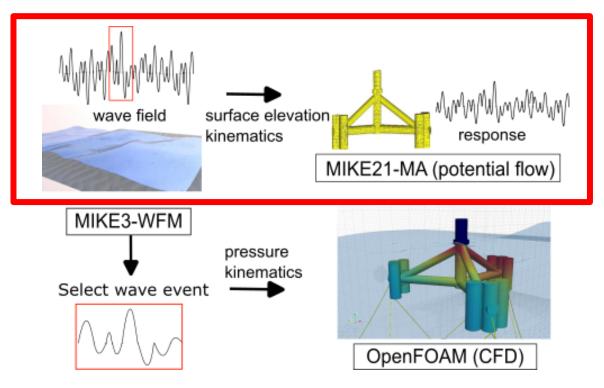
EERA DeepWind 2023

A Potential Flow Based Numerical Framework for Engineering Design of Floating Offshore Wind Turbine Foundations

Pietro Danilo Tomaselli, dto@dhigroup.com

18 January 2023, Trondheim, Norway

FloatStep research project



Support commercial breakthrough of Offshore Floating Wind technology by:

- Reducing cost by structural optimization
- Enabling accurate design by validated engineering tools
- Reducing risks from extreme waves by detailed flow simulations
- Reducing risks during installation and operation by lab tests and full-scale data

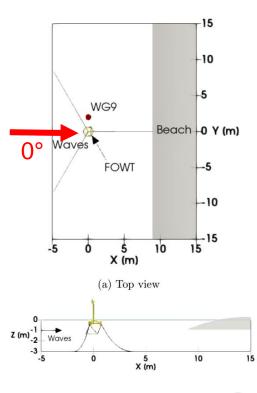
Hybrid numerical framework for FOWT foundation response

Experimental campaign at DHI laboratory (2017)

Team: DHI + DTU + Stiesdal OT

Floater: semi-sub configuration spar configuration

Turbine: DTU 10MW

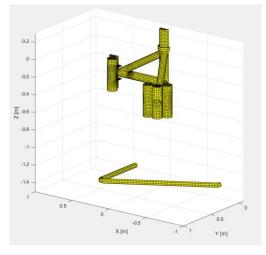

decay tests, Tests: only waves waves+wind

Data: water surface elevation, floater 6DOF nacelle 6DOF

Experimental tests for validation (wave-only, no wind)

Test ID	Sea state	Hs [m]	Tp [s]	Direction
T167	03	0.055	0.84	0°
T193	05	0.069	0.94	0°
T185	06	0.103	1.15	0°
T201	64	0.103	2.32	0°
T178	11	0.175	1.833	0°

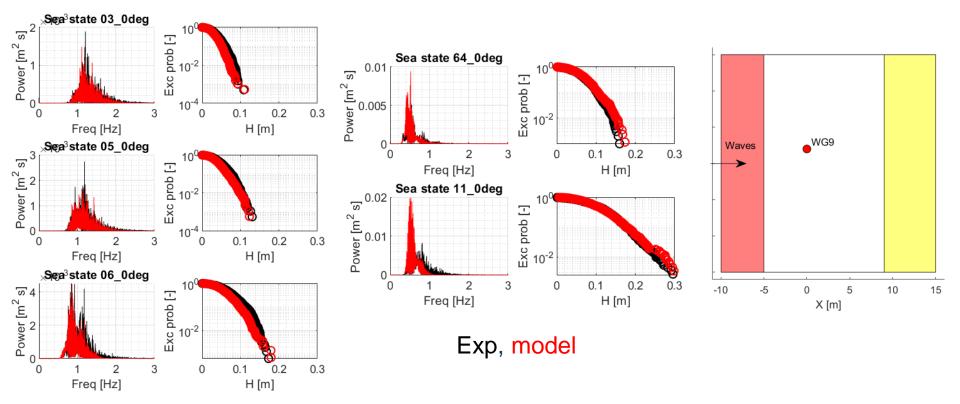
The numerical model


DHI's MIKE3-WFM Wave propagation

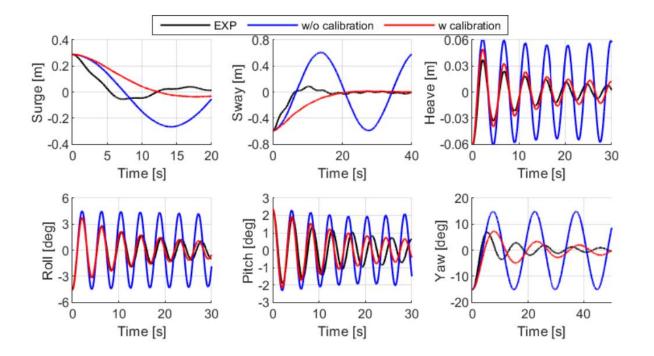
Wave forcing coupling

Ħ	Ŧŧ	Ŧ	ł	d	ł	t	H	ŧ	Þ	H		đ	Π		1	l	t	H	∄	ij,	Ħ	h	H	i	f	ü	Ï	H	ł	F	ł	Ī		Ì	ŧ	F	F	Ŧ	3	1	E	E	£	Э		F	1	ć.	-	-	-	-		-	-	_		
-	Ŧ	Ŧ	Н	H	Ħ	t	ш	t	Π		1	Æ	H	Æ	н	₩	н	H	Ħ	Ħ	H	Ħ	Ħ	н	t	tŀ.	H	H	÷	П	Ŧ	t	t:	Ŧ	F	F	Ŧ	ŧ	t	Ľ	Ľ	F	Ŧ	Н		=	-		E		_	Ŧ	-	F	-	⊨	_	
	11	t	Ľ	I.	₽	4	и	÷	н	н	đđ	đđ	H	ш	1	Ħ	Ħ	п	Ш	Ш	Π	Π		П	П	Ш	n	Ħ	Ľ	н	÷	H	Ŧ	Т	r	h	t	t	÷	-	ы		Ŧ	Ξ		t	-	-	t	-		Ŧ		-		=		
14	τ#	μ	И	H	₩	H	H	t	н	н	di i	đ	rП	Æ.	П	Ш	П	Ш	Ш	Ш	ц	ц	ц	щ	н	Щ.	II.	П	n	t	Ħ	t	h+	÷	Ľ	E	Г	Τ	Ŧ		h	-	÷	4	-	÷			F		-				-	-	-	-
88	₩	H	н	H	Ħ	H	н	t	H	m	П	Ш	П	Æ.	П	Ш	П	Π	Ш	Ш	П	ц	ц	щ	Ш	I	I	П	Л	Ľ	t	t	÷	÷	⊢	ь	L	Į.	+	з			t		-	t	-	-	⊢	-	_	÷		-	_			_
**	н	Ηv	н	H	₩	Ħ	Ħ	t	H	П	ΠI.	Ш	п		П				π	Ш	п	П	Ш	ш	П	п	П		r	П	t	t	h	÷	ŧ.	H	÷	4	+	-		Ε.	Г	-	-	г	-	-	-	_	_	+	_	+	_	-	-	_
##	+#	H	н	H	₩	╋	H	t	н	н	đ	đ	П	т	П	π	п		π	П	Π				П	П	π	Π	t	н	t	Ħ	H	t	⊢	H	÷	4	+	-	μ,	Ľ	Г						Г		_	t	-	t	_	-	-	-
##	4#	4	н	4	₽	H	н	ŧ	H	H	đ	đ	H	詽	f	1İ	t	H	t	tt	H	H	H	1	1	t	t		H		4	÷	÷	4	+	1	ŧ.	1	1		1	Ľ	£	1		E			Γ		_	1		1		-	-	-
Ш	11	ĽĹ.	II.	đ	ı	IÍ.	Ш	1	II I	II I	4	4	щ	Щ	4	4	4	ц	4	#	ц	н	H	4	4	4	4	ц		ų,	1	I.	1	1	L	L	L	ſ	ſ	1		n	Т	-		г	-	<u> </u>	-	_	_	Ť	-	+	-	-	-	-
ш	П	П	П	П	IF	Г	П	T	П		11	11	ш		Ш				Ш	Ш.	п				Ш	Ш	Ш		I.		Г		П	т	г	Г	Г	Т	Ŧ	-	-	t	t	-	-	÷	-	-	-	-	_	+	_	⊢	_	⊢	_	-
**	##	H	н	4	₽	H	н	t	н	н	н	dt	н	н	н	Ħ	Ħ	H	Ħ	Ħ	Ħ	H	H	Ħ	t	Ħ	Ħ	ħ		н	٠	H	h.	÷	⊢	H	÷	÷	+	4	_	-	+	_	_	1	_	_	⊢			_						
		ш	Ш	ı	Ш	I	Ш	L	Ш		11	11	ш		Ш				Ш		п				Ш	Ш	Ш		ı.		L		L.	L	L	L	L	L	Т				L			L			L 1			Т		Г				
	Ħ	H	н	n	Ħ	H	H	t	н	н	н	1T	П	т	п	π	п	Π	π	T	Π	Π	Π	п	Т	T	T	Π	t	н	t	t	t	t	t	H	t	t	+	-	h	-	۰	-	-	+	-	-	-	-	_	+	_	+	_	-	-	-
		Ш	Ш	1	Ш	I		I	Ш		Ш	ı	Ш		Ш				Ш		п				Ш	Ш	Ш		l		L		L	L	L	L	L	L	L			L	L			L			L			Т		L		L		
1111	Ħ	H	Ħ	n	Ħ	t	Ħ	t	Ħ	н	đ	đ	н	т	Ħ	Ħ	Ħ	h	Ħ	Ħ	Ħ	h	h	Ħ	t	Ħ	Ħ	Ħ	T	t	t	t	t	t	t	r	t	t	+			t	t	-	_	t	-	_	t			+		t		-	_	_
		ш	Ш	I	Ш	I	Ш	L	Ш		11	11	ш		Ш				Ш		п				Ш	Ш	Ш		ı.		L		L.	L	L	L	L	L	Т				L			L			L			Т		L		I 1		
		ш	Ш	ı	Ш	I	Ш	L	Ш		11	11	ш		Ш				Ш	Ш.	п				Ш	Ш	Ш				L		L.	L	L	L	L	L	Т				L			L			L			Т		L		I 1		
		ш	Ш	ı	Ш	I	Ш	L	Ш		11	11	ш		Ш				Ш	Ш.	п				Ш	Ш	Ш		ı.		L		L.	L	L	L	L	L	Т				L			L			L			Т		L		I 1		
ш	Ш	ш	ш	ı	U.	L	ш	I	Ш	Ш	1	a li	ш	ш	Ш	Ш	U	Ц	Ш	Ш	Ш	Ц	Ц	Ш	Ш	11	11.	Ш	υ	u	L	П		I.	L	L	L	L	1				L			L	_					1	_		_			
111		п	П		П		П	T	П		П	Ш			П		h		îŤ	IΓ	Π				П	IF	П		п	П	Г		Т	Т	Т	Г	Г	Г	Г			1	Г			Г			Г ⁻			Т		Г		1-	_	
		ш	Ш	ı	Ш	I	Ш	L	Ш		11	11	ш		Ш				Ш		п				Ш	Ш	Ш		H		L		L.	L	L	L	L	L	Т				L			L			L			Т		L		I 1		
		ш	Ш	1	Ш	I	Ш	L	Ш		11	11	ш		Ш				Ш		п				Ш	Ш	Ш				L		L.	L	L	L	L	L	Т				L			L			L			Т		L		I 1		
		ш	Ш	1	Ш	I	Ш	L	Ш		11	11	ш		Ш				Ш		п				Ш	Ш	Ш				L		L.	L	L	L	L	L	Т				L			L			L			Т		L		I 1		
ш	ш	ш	Ц	Ц	Ш	L	Щ	T	Ш	Ш	ш	ш	ш	ш	ш	ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш		н	L	Ш	1	L	L	L	L	L	1				L			_						1						
ш	Π	П	П	П	π	Г	П	Т	П	П	Ш	Ш	П	Ш	П	π	П		Π	π	Π	Π	Π	П	П	π	π	Π	t	П	Т	П	Т	Т	Г	Г	Г	Т	т			г	Т			Г			Г			т		Г				

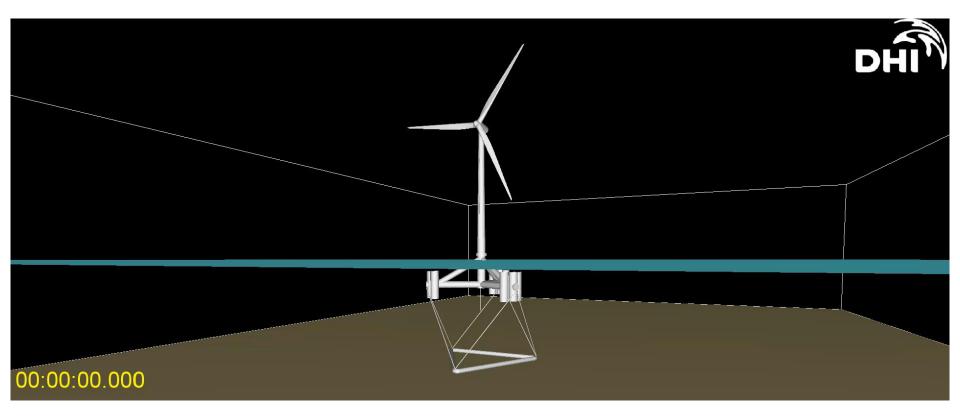
- CFD code
- Height function for free surface
- Sigma-layer system


DHI's MIKE21-MA 6DOF response

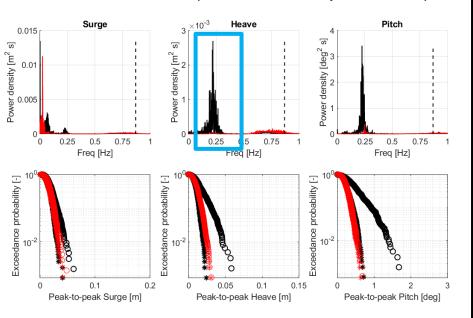
- Potential Flow Theory-based
- Radiation-diffraction in freq-domain
- Wave-response in time-domain

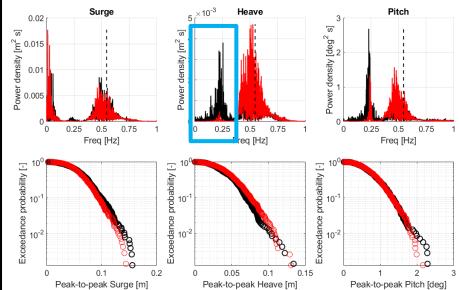


Wave modelling results



Damping calibration through experimental decay tests

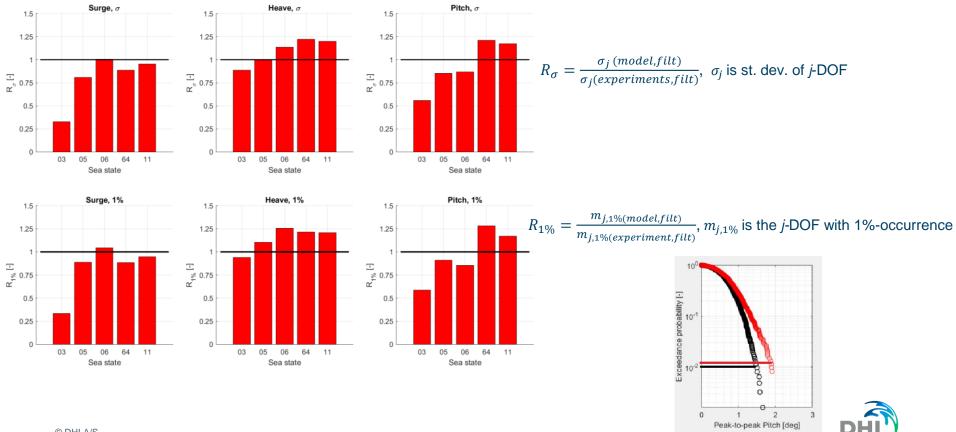

An animation from one of the cases...


6DOF-response analysis results

Sea state 06 (Hs = 0.1 m, Tp = 1.15 s)

Exp, model

Sea state 11 (Hs = 0.17 m, Tp = 1.83 s)



Exp, model

© DHI

Wave-induced 6DOF response (overview for 0°-waves)

Conclusions & Future work

- Wave modelling validation was satisfactory overall
- Response validation indicated good results within the wave forcing frequency range. The model did not fully reproduce the (second-order) subharmonic motions
- Extend validation to cases with 30°-incident wave direction
- Investigate more the 2nd-order drift force modelling
- Finalize the framework with including the CFD module for highly-nonlinear responses
- Include wind forcing

Thank you, dto@dhigroup.com

Pietro Danilo Tomaselli

