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What is the level of accuracy of a medium-
fidelity model in FOWT simulation?



Actuator Line Model (ALM)

● Reduced computational cost with respect 

to fully-resolved CFD simulations: the 

boundary layer is not solved. 

● The actuator line replaces the blades:  

reliable airfoil polars are required.

● Good resolution of the wake according to 

the refinement level. The flow field is 

solved with a finite volume approach.

● Imposed surge and pitch platform motion 

is implemented in the in-house ALM solver.

● Verification of FOWTs with ALM 

against wind tunnel experiments.



Actuator Line Model (ALM)

• Effective velocity method to 
calculate the angle of attack and 
the aerodynamic coefficients.

• Correction of the angle of attack 
to mimic the downwash produced 
by the force

• Forces are applied in 
the numerical domain

• 2D Gaussian spreading 
function with 
regularization kernel
width ε

Δ𝛼 = 𝑓(Cl, Cd)

velocity sampling line

• ALM is implemented in OpenFOAM CFD 
solver: body forces provide the source 
term for Navier-Stokes momentum 
equation.

ALM simulation in steady wind: tip and root 
vortices are visualised with Q-criterion (cyan) 
and the body forces (red).



Experimental Setup

DTU 10-MW RWT Exp.1
UNAFLOW1

Exp.2
OC6 Phase III2

Rotor diameter [m] 2.38

Hub diameter [m] 0.178

Rotor overhang [m] 0.09467 0.139

Tilt angle [°] 5

Rotational speed [rpm] 240

Freestream wind speed [m/s] 4

Hub height from ground [m] 2.086 2.188

Geometrical scale 1:75

Velocity scale 1:3

Low-Reynolds arifoil series SD7032 tested in 2D Wind 
Section at DTU1

Experiment setup Conceptual layout
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1 Fontanella A. et al. “UNAFLOW: a holistic wind tunnel experiment about the aerodynamic 
response of floating wind turbines under imposed surge motion.” Wind Energy Science. 2021

2 Bergua R. et al. “OC6 Project Phase III: Validation of the Aerodynamic Loading on a Wind 
Turbine Rotor Undergoing Large Motion Caused by a Floating Support Structure.” Wind Energy 
Science Discussions. 2022
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Load Cases

Load Case
f 

[Hz]
A

[m],[°]

Steady LC1.1 - -

Surge

LC2.1 0.125 0.125

LC2.5 1 0.035

LC2.7 2 0.008

Pitch

LC3.1 0.125 3

LC3.5 1 1.4

LC3.7 2 0.3

𝑓, 𝜔 platform motion frequency [Hz] [rad/s]

𝐷 rotor diameter [m]

𝑈0 mean wind speed [m/s]

𝐴 platform motion amplitude [m] [°] 

Unsteady aerodynamics parameter: 𝑘 =
𝐷 ⋅ 𝑓

𝑈0

𝑥𝑠𝑢𝑟𝑔𝑒 = 𝐴 sin(𝜔𝑡 + 𝜙) ሶ𝑥𝑠𝑢𝑟𝑔𝑒 = 𝐴𝜔 cos(𝜔𝑡 + 𝜙)

Prescribed sinusoidal surge displacement:

Pitch platform motion is also implemented with rigid 
body kinematics, velocities are obtained by time 
derivation of the displacements.



CFD Setup and validation

LC1.1 ALM Exp. 1 %error Exp.1 Exp. 2 %error Exp.2

Thrust [N] 36.89 35.91 +2.72 33.68 +9.52

Torque [Nm] 3.49 3.32 +5.14 3.23 +8.17

• Rotor is modelled, no tower nor nacelle

• Tip and root losses not implemented

• Numerical domain with wind tunnel 
dimensions

• Blockage effect due to confined environment

• Wind tunnel boundary layer (BL) not 
modelled: slip-wall condition on lateral 
boundaries. The domain height is reduced 
by BL displacement thickness.

• Constant inflow velocity 𝑈0=4 m/s

• Inflow Turbulence intensity TI=2%ALM-CFD parameters:
• ε/Δx =2 to avoid numerical instability3

• average number of actuator line 
points 75

• time-marching U-RANS with time step 
Δt=5 ⋅ 10−4 s

• Runtime of 10 s (40 revolutions) 
simulated time: 26 clock hours

3 Troldborg, N., “Actuator Line Modeling of Wind Turbine Wakes”, PhD Thesis, Technical University of Denmark, Lyngby, Denmark, 2008. 

Near wake and tip 
vortex region refinement

Far wake refinement

Higher discrepancies for torque: the tip losses are impactful.



FOWT – Surge Platform Motion



FOWT – Pitch Platform Motion



Wake analysis

Hot wire Cross-Wind (CW)

𝑤𝑎𝑘𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 =
1

σ𝑖
𝑛 |𝑟𝑖|

෍

𝑖=1

𝑛

|𝑟𝑖|(𝑈𝑥𝑖 − 𝑈0)

n = number of probes

Hot wire Along-Wind (AW)



Flow Field – Vorticity 

LC2.5

LC3.5

LC2.7

LC3.7



Dynamic Inflow

Tip vortex pairing occurs at higher surge 
platform displacements

Load 
Case

f 
[Hz]

A
[m]

Ω
[rpm]

𝜃𝑝𝑖𝑡𝑐ℎ
[°]

Surge
LC2.12 2 0.08 240 0

LC2.17 2 0.08 240 1.5±1.5

LC2.12

LC2.17
LC2.17



Conclusions

• The in-house ALM provides a reliable tool to simulate FOWTs

• Based on the EVM to assess the angle of attack, the level of mesh refinement at the 
rotor is limited. 

• ALM capability to resolve the wake. ALM can be used for wind farm layout.

• ALM shows wake dynamic modes and mixing.

Future Work

• Development of a rigorous velocity 
sampling based on circulation designed for 
FOWTs (in progress).

• Tip and root loss model can improve ALM 
predictions.

• LES for wake investigations with POD.



Thank you for your attention



Summary – Surge Load Cases

Thrust
Δ𝐹𝑥

𝐴
=

𝐹𝑥|𝑝𝑒𝑎𝑘+−𝐹𝑥|𝑝𝑒𝑎𝑘−

A

Torque
Δ𝑀𝑥

𝐴
=

𝑀𝑥|𝑝𝑒𝑎𝑘+−𝑀𝑥|𝑝𝑒𝑎𝑘−

A

• Quasi-steady behaviour for surge motion.

• ALM agreement with thrust amplitudes of experiments, mean values overpredicted as in steady case LC1.1

• Torque amplitude discrepancies in experiments: mass imbalances during tests



Summary – Pitch Load Cases

Torque
Δ𝑀𝑥

𝐴
=

𝑀𝑥|𝑝𝑒𝑎𝑘+−𝑀𝑥|𝑝𝑒𝑎𝑘−

A

Thrust
Δ𝐹𝑥

𝐴
=

𝐹𝑥|𝑝𝑒𝑎𝑘+−𝐹𝑥|𝑝𝑒𝑎𝑘−

A

• Quasi-steady behaviour in pitch motion as expected, fit with experiments is lower as frequency increases

• ALM amplitudes in agreement with experiments, mean values overpredicted as in steady case LC1.1

• Torque amplitude discrepancies in experiments: mass imbalances during tests


