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What is the level of accuracy of a medium-
fidelity model in FOWT simulation?



Actuator Line Model (ALM)

ot e Reduced computational cost with respect
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2nd Pitch to fully-resolved CFD simulations: the
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<. Motion. boundary layer is not solved.
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e The actuator line replaces the blades:
reliable airfoil polars are required.
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e Good resolution of the wake according to
Body Force the refinement level. The flow field is
>ource term solved with a finite volume approach.

Mesh
intersection

Actuator Line
Model

e Imposed surge and pitch platform motion
is implemented in the in-house ALM solver.

Increment time o Verification Of FOWTs With ALM
— against wind tunnel experiments.
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Actuator Line Model (ALM)

LBes0l 30 21 220401 - Effective velocity method to * ALM is implemented in OpenFOAM CFD
— calculate the angle of attack and solver: body forces provide the source
the aerodynamic coefficients. term for Navier-Stokes momentum
equation.

\ - Correction of the angle of attack
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ALM simulation in steady wind: tip and root
0 vortices are visualised with Q-criterion (cyan)
and the body forces (red).




Experimental Setup

DTU 10-MWRWT e e o2 Experiment setup Conceptual layout
Rotor diameter [m] 2.38
Hub diameter [m] 0.178 —
Rotor overhang [m] 0.09467 0.139 g
Tilt angle [°] 5 £
| -
Rotational speed [rpm] 240 :e’_
Freestream wind speed [m/s] 4 L
Hub height from ground [m] 2.086 2.188
Geometrical scale 1:75
Velocity scale 1:3 ™~
=
Low-Reynolds arifoil series SD7032 tested in 2D Wind GE)
Section at DTU! =
Q
Q
>
1 Fontanella A. et al. "UNAFLOW: a holistic wind tunnel experiment about the aerodynamic L 0.730m ™ Center of pitch rotation
response of floating wind turbines under imposed surge motion.” Wind Energy Science. 2021 T

2Bergua R. et al. “OC6 Project Phase III: Validation of the Aerodynamic Loading on a Wind
Turbine Rotor Undergoing Large Motion Caused by a Floating Support Structure.” Wind Energy
Science Discussions. 2022



Load Cases

D -f
Unsteady aerodynamics parameter: k = U Prescribed sinusoidal surge displacement:
0
f, w platform motion frequency [Hz] [rad/s] Xsurge = Asin(wt + ¢) Xsurge = A w cos(wt + ¢)
D  rotor diameter [m]
U, mean wind speed [m/s] A Hub displacement
A platform motion amplitude [m] [°]
0_
f A
Load Case o -A : : !
[Hz] [m],[°] 0 90 180 270 360
Steady LC1.1 - - Motion Phase [°]
LC2.1 0.125 0.125 Apparent wind
Surge LC2.5 1 0.035 Uo +wA-
LC2.7 2 0.008 Up -
LC3.1 0.125 3
U(] — WA , . |
Pitch LC3.5 1 1.4 0 90 180 270 360
LC3.7 2 0.3 Motion Phase [°]

Pitch platform motion is also implemented with rigid
body kinematics, velocities are obtained by time
derivation of the displacements.



ALM-CFD parameters:

CFD Setup and validation

« Rotor is modelled, no tower nor nacelle

Far wake refinement

» Tip and root losses not implemented

 Numerical domain with wind tunnel
dimensions

 Blockage effect due to confined environment
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» Wind tunnel boundary layer (BL) not
modelled: slip-wall condition on lateral
Near wake and tip boundaries. The domain height is reduced

vortex region refinement by BL displacement thickness.

LU NSRS & hidn AN Ado
cellVolume

« Constant inflow velocity U,=4 m/s

g/Ax =2 to avoid numerical instability3 * Inflow Turbulence intensity TI=2%

average number of actuator line

points 75 LC1.1 ALM Exp. 1  %error Exp.1 Exp. 2 %error Exp.2
time-marching U-RANS with time step Thrust [N] 36.89 35.91 +2.72 33.68 +9.52
At=5-10"*s Torque [Nm] ~ 3.49  3.32 +5.14 3.23 +8.17
Runtime of 10 s (40 revolutions)

simulated time: 26 clock hours Higher discrepancies for torque: the tip losses are impactful.

3 Troldborg, N., “Actuator Line Modeling of Wind Turbine Wakes”, PhD Thesis, Technical University of Denmark, Lyngby, Denmark, 2008.



FOWT — Surge Platform Motion

surge displ. [m]
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FOWT — Pitch Platform Motion
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Wake ana |y5i5 Hot wire Along-Wind (AW)

0.8
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wake deficit = S r] § |ri|(Uxi — Up) 0.71 —— LC2.7  —e- LC2.7Exp.1
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Flow Field — Vorticity
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Dynamic Inflow
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Load f A Q Opitcn
Case [Hz] [m] [rpm] [°]
LC2.12 2 0.08 240 0
Surge

LC2.17 2 0.08 240 1.5+1.5

Tip vortex pairing occurs at higher surge
platform displacements
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Conclusions

The in-house ALM provides a reliable tool to simulate FOWTs

Based on the EVM to assess the angle of attack, the level of mesh refinement at the
rotor is limited.

ALM capability to resolve the wake. ALM can be used for wind farm layout.
ALM shows wake dynamic modes and mixing.

FU'l'U re Work vorticity Y
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» Development of a rigorous velocity
sampling based on circulation designed for
FOWTs (in progress).

 Tip and root loss model can improve ALM
predictions.

 LES for wake investigations with POD.
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Summary — Surge Load Cases
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« Quasi-steady behaviour for surge motion.
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« ALM agreement with thrust amplitudes of experiments, mean values overpredicted as in steady case LC1.1

« Torque amplitude discrepancies in experiments: mass imbalances during tests



Summary — Pitch Load Cases
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 Quasi-steady behaviour in pitch motion as expected, fit with experiments is lower as frequency increases

« ALM amplitudes in agreement with experiments, mean values overpredicted as in steady case LC1.1

« Torque amplitude discrepancies in experiments: mass imbalances during tests




