EERA DeepWind Conference 18-20 January 2023 Trondheim, Norway

Validation of a panel method with full-scale FOWT measurements and verification with engineering models

Stefan Netzband

Co-Authors: Christian W Schulz, Umut Özinan, Raphaël Adam, Thomas Choisnet, Po Wen Cheng, Moustafa Abdel-Maksoud

Fluid Dynamics and

Methods

• Verification

• Validation

• Summary

Methods

3

Verification models

pan MARE

- First order panel method
 - for aerodynamics
 - for hydrodynamics
- **Geometry from BW Ideol**

TUHH

4

panMARE – Theory

*pan*MARE – <u>Pan</u>el code for <u>maritime</u> <u>applications</u> and r<u>e</u>search

- Boundary element method (BEM)
- Three-dimensional
- Low-order panels
- Potential theory (inviscid, irrotational and incompressible)
- Superposition principle

$$\Phi = \Phi_{induced} + \Phi_{wave}$$

Fluid velocity is given by gradient of velocity potential

 $\nabla \Phi = \vec{v}$

- Bodies: source and doublet panels, Dirichlet boundary condition
- Rotor wake: free vortex wake, doublet panels, iterative deformation
- Platform: instantaneous wetted surface
- Free surface: semi-Lagrange, Dirichlet, kinematic and dynamic boundary condition

Joseph Katz and Allen Plotkin. Low-Speed Aerodynamics. Cambridge University Press, Cambridge [u.a.], second edition, 2001.

TUHH Maritime Systems

6

BEM

- Aerodynamic domain
 - Rotor: 3900 body panels, 8850 wake panels
 - Tower: 160 body panels
- Hydrodynamic domain
 - Platform: 1836 body panels, 1856 free surface panels
- Total: 16602 panels

١Z

panMARE – Model

Additional techniques

- Mooring: Lumped mass model
 - 318 nodes
 - Synthetic fiber ropes (static-dynamic stiffness)
- Additional heave drag elements (Morison drag)
- Rigid model
- 6+1 DOF (6 platform, 1 rotor)
- Turbulent wind field based on TurbSim scheme
- Integrated controller Bladed DISCON interface
 - Simulation controller differs from real turbine

7

TUHH **Maritime** Systems

Decays, RAO and random seaway

Institute for Fluid Dynamics and Ship Theory

S. Netzband, C. W. Schulz, M. Abdel-Maksoud pan MARE 8

Heave decay

- **Reference period from OrcaFlex results** ٠
- Initial heave equal in all cases ٠

Pitch decay

RAO

- Regular waves
- Different wave heights (H1<H2<H3)
- Reference periods from free decay
- Heave: Dependent on free surface parameters in panMARE and treatment in OrcaFlex / HydroDyn

Coupled simulation

- wind speed: 11 m/s
- significant wave height: 1.5 m
- Identical random seaway
- Identical turbulent wind field
- Results
 - Deviations in heave motion
 - Good agreement of pitch motion
 - Consistent with decay and regular wave RAOs

580

600

12

Turbine operation

Coupled simulation

- Good agreement of tower top bending moments
 and power
 - Differences due to neglected structural deformations of tower and blades
- Differences in rotor speed due to different aerodynamic modelling
- All results normalized (norm.), divided by constant reference

Wake – Doublet strength

Free surface – Induced elevation

Hybrid Simulations

Prescribed motion and constraint wind field

Institute for Fluid Dynamics and Ship Theory

S. Netzband, C. W. Schulz, M. Abdel-Maksoud pan MARE 14

Validation in time-domain using full-scale data

Problem

- Wave elevation at platform unknown
- Waves dominate the platform motions

Approach

- Prescribe motion of the simulation model with measurement data
- Wind field reconstructed from LIDAR measurement (low frequency coherence)
- Hydrodynamic simulation is suppressed

Prescribed motion and constrained wind field

Motions are prescribed based on measurement data, LIDAR reconstructed wind field

Rotor Speed (norm.) 0.8 1.1 0.1 0.9 0.9 0.8 0.7 Blade Pitch (norm.) 9 8 01 150 175 200 225 250 275 300 325 350 Time

Tower top moments

Institute for Fluid Dynamics and Ship Theory

Turbine operation

Turbine operation

Tower top moments

Summary

• Verification

- Overall good agreement
- Heave motion depending on free surface parameters
- Hybrid simulation
 - Accurate validation of the aerodynamics and inertia loads
 - Good agreement for turbine operating parameters
 - Blade loads influenced by rigid blade model

Acknowledgements

Federal Ministry for Economic Affairs and Climate Action

Projektträger Jülich Forschungszentrum Jülich

Stefan Netzband

Co-Authors: Christian W Schulz, Umut Özinan, Raphaël Adam, Thomas Choisnet, Po Wen Cheng, Moustafa Abdel-Maksoud

Fluid Dynamics

Ship Theory

