Life-cycle impacts of onshore wind-power plants on bird richness

Roel May, Francesca Verones, Craig Jackson, Bård G. Stokke

A renewable world

Renewable energy contributes to lower CO2 emissions

- ...but affects the natural environment
- Wind power potential is enormous
 - ...but can landscapes withstand it on top of existing human activities?

Climate Nature Renewable energy

Cumulative effects of piecemeal development

- Environmental Impact Assessments (EIA) often fail to account for cumulative impacts at larger spatial scales
- Life cycle assessments (LCA) can provide a more holistic view, however models quantifying the main impact pathways on biodiversity are still lacking

 To address this gap, we present a methodology to quantify impacts of habitat loss, disturbance and collision at onshore wind power plants on bird biodiversity globally and regionally

Life-cycle impact assessment

 LCIA assesses the spatially explicit impacts occurring throughout a wind farm's life cycle, considering various impact pathways on avian biodiversity

Three impact pathways:

- Habitat loss
- Disturbance
- Collision

Two spatial scales:

- Global
- Norway

Life-cycle impact assessment

- Quantification of the impacts on bird richness
 Assume impact occurs through direct or indirect loss of area
 - Based on the Species-Area Relationship (SAR)
 - Potentially Disappeared Fraction (PDF) of species (per bird order)
 - Characterization Factor (CF) of impact per GWh

Life-cycle impact assessment

350

Global LCA impacts

- Range maps from BirdLife were used to map species richness for in total 10,677 species
- within 18 bird orders
 - probability of presence of species
 - accounting for migratory status
 - habitat-specific relative diversity
 - Impacts were calculated for 23,068 onshore wind farms downloaded from WindPower.net

Global LCA impacts

- Disturbance and habitat loss had a greater effect compared to collisions
- Impacts are highly influenced by annual energy production

-10

Cumulative PDF/GWh (log10)

Global LCA impacts

 Globally, impacts were greatest in biodiverse tropical and subtropical regions

Collisions

Global LCA impacts

- When controlling for continent, bird order rather than country more strongly influenced variation in the pathway-specific impact per GWh
- The highest affected bird orders:
 - Ducks & geese
 - Eagles & Falcons
 - Waders
 - Grebes

	Anseriformes -	i-i	•;		•	.	i
Order	Accipitriformes -	·····	•i		·+	•	i
	Falconiformes-	i-	+;	÷	· ++-	i	
	Charadriiformes-	; ;	- • ;		 •;	i	
	Podicipediformes -		7- • i	;•	• •	·i	
	Gruiformes -	; +	÷		• • • •	· i	
	Galliformes-	i •-	i i		•i		
	Pelecaniformes-	;•	i	;	-• • i i		
	Strigiformes -	•	·;	•			
	Ciconiiformes -	i -	•-;		+i		
	Suliformes -	i•i	i	• • • •			
	Passeriformes [_]	;		•i	•i		
	Columbiformes -	;•-	i	;•i	•i		
	Piciformes -	i•-i		iiiiiiiiiiiii	•i		
	Cuculiformes -	i		•	*: ;		
	Coraciiformes -	; - ;	i-	•; •	•i		
	Caprimulgiformes -	; + ;	;•	i +	i		
	Psittaciformes [_]	i•-ii	•	i •	·i		
		-14	-13 PDF /	-12 GWh (log1	-1 0)	1	-10

 Species-specific distribution models were constructed with MaxEnt using citizen science observations (GBIF) for 211 species

0.5

x100 km

- Thereafter aggregated into 13 bird groups
- Impacts were calculated for 39 onshore wind farms

$$PDF_{i} = \frac{S \cdot P_{i} \cdot \left(1 - \left(\frac{A_{org,i} - A_{lost,i}}{A_{org,i}}\right)^{z}\right)}{\sum_{i=1}^{I} S \cdot P_{i}}$$

- Spatial resolution 1 km²
- Quantified per turbine

In addition, a metric was developed for barrier effects

 $=\frac{S_k \cdot C_{k,i} \cdot \left(1 - \left(\frac{A_{org} - \left(\pi \cdot t_w \cdot M_k \cdot (D_k \cdot d_{k,max})^2\right)\right)}{A_{org}}\right)}{\sum_i S_k \cdot C_{k,i}}$

 $PDF(B)_{k,w} =$

relative conductance to movement across suitable habitat (Circuitscape)

energetic impact of seasonal migration as a function of energy requirement and migration distance

0.5

0

5 x100 km

 In Norway, impacts increased with installed capacity, but smaller wind farms were less efficiently located with greater impacts per GWh

	Impact pathway					
Covariate	Habitat loss	Disturbance	Collision	Barrier		
Turbine capacity (MW)	94.511***	9.857**	125.329***	5.465*		
Number of turbines	66.151***	53.949***	77.239***	0.772		
Interactive effect	-11.723**	-7.447*	-10.259**	6.466*		
adjusted R ²	0.817	0.642	0.847	0.2034		

 Given the mostly coastal development, vulnerability was highest for seabirds, raptors and waterfowl

- Compared to random sites, wind farms did not seem to avoid conflicts with birds
- Although most parts of Norway are suitable for wind energy (LCOE),
- Current practice has not succeeded in avoiding sites with higher impacts for birds

Implications

- Operative LCA models can help decision-makers by:
 - assessing localized life-cycle environmental impacts for environmental-friendly wind energy production in specific regions
 - assessing impacts of future renewable energy expansion scenarios to direct strategic planning or priority setting
 - evaluate consequences of renewable energy policy implementation to achieve a more sustainable wind energy development.
 - Improve EIA practice by picking the sites with the least impact on biodiversity,

This will directly and significantly benefit technological performance: more wind energy projects will be realized with reduced environmental, and societal, impact per GWh

www.nina.no

The Impact of Mitigation

• Wind energy with the least environmental impact per GWh requires to act upon:

- acknowledgment that trouble never comes alone ('assess')
- balancing interest trade-offs ('engage')
- embracing uncertainty ('understand')
- Failing to mitigate these impacts negates an assessment of the trade-offs between biodiversity and energy production, and therefore the balancing of global sustainability goals.

Thank you for your attention

